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Resumo 

Os sistemas computacionais baseados em processadores (GPPs) podem ser estendidos 

com co-processadores, unidades de processamento reconfiguráveis – RPUs, de modo a 

melhorar características relacionadas com o desempenho (ex.: tempo de execução, consumo 

de energia). 

Técnicas tradicionais de particionamento hardware/software permitem-nos atingir esse 

objectivo. No entanto, é comum o processo ser moroso, necessitar de conhecimentos 

não-triviais sobre projecto de hardware digital, e o resultado final ficar muito dependente de 

aspectos específicos da arquitectura alvo, dificultando a portabilidade da solução para outros 

sistemas, mesmo que façam parte da mesma família de dispositivos. 

Pretende-se com esta tese propor técnicas inovadoras que permitam o particionamento 

dinâmico de aplicações, ao nível da representação binária. O método aborda a migração 

automática de código em tempo de execução, do processador para o co-processador. A 

migração é baseada no Megablock, um novo tipo de loop, criado tendo em mente as 

características do particionamento dinâmico. 

Neste trabalho são apresentadas técnicas e algoritmos que permitem a detecção, 

identificação, implementação e melhoramento de Megablocks, assim como um estudo 

aprofundado do uso do Megablock como unidade de detecção, sobre um conjunto abrangente 

de aplicações de referência. 

As técnicas propostas para o melhoramento do desempenho incluem o desenrolamento de 

loops internos e o pipelining de Megablocks. Experiências que consideram estas técnicas e 

realizadas sobre um conjunto de 61 casos de estudo de referência revelam uma aceleração 

média de 5,6× (de 0,2× até 32×). Estes valores de aceleração consideram a execução completa 

dos casos de estudo e incluem os custos de comunicação entre o GPP e o RPU. 
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Abstract 

Typical embedded computing systems based on general purpose processors (GPPs) can be 

extended with coprocessors, such as Reconfigurable Processing Units – RPUs, to improve 

performance characteristics such as execution time and/or energy consumption. A common 

step needed for mapping computations to these systems is the use of traditional 

hardware/software co-design. However, this step is usually time-consuming, non-trivial 

knowledge about digital system design is required, and the resultant partitioning is typically 

tied to the system architecture being considered. This prevents the portability of 

hardware/solutions, as well as performance portability between different embedded 

computing devices. 

This thesis proposes novel techniques for dynamically partitioning applications at the 

binary level. The approach addresses the automatic migration of computations during 

runtime, from a GPP to an RPU acting as its coprocessor. The proposed techniques focus on 

the identification and mapping of a novel kind of loop, named Megablock, to an RPU. The 

Megablock was designed to be identified during runtime and to be a bridge between the 

sequential code of the GPP and the configuration of an RPU. The work presented shows 

methods and algorithms for the detection, identification, implementation, and optimization of 

Megablocks, as well as an extensive study of the impact of using the Megablock as a 

detection unit over a comprehensive set of benchmarks. 

The proposed techniques for optimization of Megablocks include unrolling of inner loops 

and pipelining of Megablocks. Experiments considering a coarse-grained reconfigurable array 

as RPU, coupled to a soft-core microprocessor and using the techniques proposed in this 

thesis, reveal average overall execution speedups, including all communication overheads, of 

5.6× (from 0.2× to 32×) over the software execution, when considering a set of 61 integer 

benchmarks. 

 

Keywords: Dynamic Partitioning, Reconfigurable Computing, Loop Pipelining, 

Heterogeneous Architectures, Runtime Reconfiguration, Binary Translation, FPGA, 

Instruction Trace, Megablock, Embedded Systems 
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where during runtime, sections of a software-only 

program are moved and executed in dedicated hardware 

components.  

Dynamic Partitioning Same as DHSP in the context of this thesis. 

Executed Instructions 

Threshold 

Megablock detection parameter. If the number of 

executed instructions in the processor corresponding to a 

detected Megablock falls below the executed instructions 

threshold the Megablock is ignored. 

FF Flip-Flop. Circuit with two stable states which can be 

used as a memory element to store state information. A 

key component of modern FPGAs. 

FPGA Field-Programmable Gate Array. Integrated circuit 

designed to be configured after manufacturing. Usually 

programmable at the bit-level. 

Fragment Sequence of executed basic blocks which do not jump 

backward. 

FU Functional Unit. A digital circuit which can perform 

operations and calculations. A more general form of the 

ALU. 

GPP General Purpose Processor. Specific term for a CPU 

which is programmable through instructions and has been 

designed to execute generic applications. 

Hotspot Same as Critical Loop in the context of this thesis. 

ILP Instruction-Level Parallelism. The parallelism associated 

with the instructions and/or primitive operations that can 

be performed simultaneously. 
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IM Input Module. Section in the architecture of a pipelined 

Megablock responsible for generating the inputs for each 

iteration. 

Induction Variable Variable which value is increased or decreased by a fixed 

amount on every iteration of a loop, or is a linear function 

of another induction variable. 

IPC Instructions Per Cycle. Term used to describe one aspect 

of performance, the average number of instructions 

executed per clock cycle. 

IR Intermediate Representation. Data structure which 

represents a program or part of a program in an abstract 

way. 

Kernel Same as Critical Loop in the context of this thesis. 

LM Loop Module. Section in the architecture of a pipelined 

Megablock responsible for executing the iterations of the 

loop. 

LOC Lines of Code. Software metric used to measure the size 

of a software program by counting the number of lines in 

the text of the program's source code. 

LUT Look-Up Table. Hardware structure used to implement 

Boolean logic functions in hardware, such as AND, OR 

and XOR. A key component of modern FPGAs. 

Maximum Pattern Size Megablock detection parameter. Maximum number of 

pattern elements of a Megablock that can be detected.  

Megablock Loop structure which represents a repeatable sequence of 

instructions in the execution trace. 
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MSI Megablock Signature Identification. A Megablock 

identification technique which relies on an individual 

signature for each Megablock. 

PLB Processor Local Bus. Bus structure provided by Xilinx to 

develop system architectures in Xilinx FPGAs. 

RPU Reconfigurable Processing Unit. A reconfigurable 

hardware unit for dedicated computations. 

SAI Single Address Identification. A Megablock identification 

technique which relies on the address of a single 

instruction. 

SAr Specialized Array. An RPU implementation which 

corresponds to a single Megablock. 

SM Store Module. Section in the architecture of a pipelined 

Megablock responsible for executing store operations 

according to their original order. 

SRA Specialized Reconfigurable Array. An RPU 

implementation which supports several Megablocks and 

which is runtime reconfigurable. 

Subsequence Part of a sequence of elements, where element order is 

maintained but consecutiveness is not enforced. E.g., bd is 

a subsequence of abcde. 
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Substring Subsequence formed by consecutive elements of a 

sequence S of symbols (a string). E.g., bcd is a substring 

of abcde. 

Type of Pattern Unit Megablock detection parameter. The kind of pattern 

element used for detection (e.g., instruction, basic block). 

Unrolling of Inner Loops Megablock detection parameter. If enabled, gives priority 

to Megablocks with more pattern elements, forming 

Megablocks with unrolled inner loops. Otherwise, gives 

priority to Megablocks whose pattern has less elements. 
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1  Introduction 

The challenging requirements of designing and implementing high-performance and 

flexible embedded systems at low cost have made the use of field programmable gate arrays 

(FPGAs) an attractive option [1]. These modern, high-capacity devices are being used as 

platforms for implementing complete systems-on-chip and include one or more general 

purpose processors (GPPs). Even as computation shifts to the multi-core paradigm, there is 

still the need for acceleration of specific computation tasks [2, 3], e.g., by connecting 

application-specific accelerators to the GPPs. 

A flexible solution for the hardware accelerators is the use of Reconfigurable Processing 

Units (RPUs) [4, 5]. Figure 1.1 illustrates the organization of a typical architecture coupling 

an Reconfigurable Processing Unit (RPU) to the GPP. Many different possibilities can be 

used to couple the two main components of this architecture [6]. In the target organization 

illustrated, the RPU communicates with the GPP by direct connections and both have access 

to the system memory (i.e., the RPU acts as a traditional coprocessor). However, it is usually 

required a high design effort to implement those systems. The design-flow combines software 

development and hardware design, the latter usually starting from a specification in a 

hardware description language (HDL) such as Verilog [7], and thus requiring hardware design 

expertise. 

1.1 Hardware/Software Co-Design 

Hardware/software co-design [8, 9] is a methodology for designing embedded systems 

consisting of hardware and software components. An important part of hardware/software co-

design is hardware/software partitioning. It can be used to select and map the parts of the 

application that will be executed in the GPP and in the RPU. It contains steps such as the 

detection of computation-intensive sections in the application (also known as hotspots or 

critical sections), mapping the computations to each of the components of the target 

architecture (i.e., the software and the hardware components), and adapting the software 

application (e.g., calls to special instructions are inserted in the application source code) to 
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use the hardware component. This requires the insertion of synchronization and data 

communication primitives. 

 

Figure 1.1. Block diagram of a typical target system which includes a RPU coprocessor acting as an 

accelerator of the GPP. 

Depending on the tools, the hardware/software process can range from mostly manual to 

highly automated [10, 11]. For instance, and example of an automated approach is to use 

high-level synthesis tools, such as Catapult C (from Mentor Graphics), which translate C code 

to HDL [12]. This often requires rewriting the source code to fit the translator’s requirements 

and limitations. Implementing the interface between the generated hardware and the software 

is also necessary, a task which might require additional, manually-developed hardware, and 

further source code modifications. In this scenario, the developer still needs non-trivial 

knowledge on digital systems design, and adapting applications to use custom hardware is 

done on an application-by-application basis. 

There has been a continuous effort to automate the migration of computations from a GPP 

to custom hardware. In a promising approach the partitioning is done over the binaries of the 

application, while it executes on the processor [13, 14]. The computation is transparently 

moved from the GPP to the coprocessor. We refer to this approach as Dynamic Hardware-

Software Partitioning (DHSP), or simply dynamic partitioning. 

1.2 Dynamic Partitioning 

Delaying partitioning until the application executes enables one to use information only 

available at runtime. With this information it is possible, for instance, to partition the 

application according to its current execution, enabling the implementation of more efficient 

designs. Another possible application of dynamic partitioning is to improve hardware 

GPP

RPU

Data

Instructions
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portability between different systems, by discovery of the specific RPU that is being used by 

the system at the time the application executes, and mapping the computation to that RPU. 

Dynamic partitioning has its costs. As some of the partitioning steps are moved to 

runtime, there is additional overhead to be considered. In addition, as execution time becomes 

an important characteristic for the steps done online, it is necessary to adapt current 

algorithms or to propose new algorithms considering a runtime scenario. 

Dynamic partitioning is reminiscent of dynamic compilation (also known as Just-In-Time 

– JIT – compilation). During JIT compilation, several compilation steps are delayed until the 

execution of the program (most notably, the generation of machine code). The Java platform 

[15] is probably the most popular example of dynamic compilation, and has been used with 

success to write applications which can execute in a variety of devices (e.g., smartphones) and 

across several operating systems (e.g., Windows, MacOs, Linux). The HotSpot [16] is an 

example of a Java Virtual Machine which uses dynamic compilation to bridge the gap in 

performance between a compiled and an interpreted language [17]. 

Performing compilation directly from the program binary is known as binary translation 

[18]. It has been successfully used to transparently execute programs in platforms not 

compatible with the ones they were originally compiled for. For instance, Pentium 

microprocessors use hardware binary translation to translate instructions of the old x86 ISA to 

the new ISA of the microprocessor [19]. The Rosetta [20] is a binary translation software used 

by Apple when it moved the Macintosh from PowerPC to Intel processors, to allow previous 

applications to run in the system without modification. Other example is the Crusoe [21] 

microprocessor, which performs binary translation dynamically in hardware. While in the first 

two cases binary translation was used to improve compatibility, possibly at the cost of 

performance, the Crusoe tries to achieve similar performance with a lower thermal envelope. 

It translates and executes binaries written in the Intel x86 ISA to a microprocessor which has 

a substantially different architecture, designed to be more power efficient.  

In this thesis we propose novel techniques for DHSP in the context of embedded 

computing systems. In particular, we propose a novel kind of loop, the Megablock, designed 

for runtime detection and for adapting sequential code to parallel computation models. The 

proposed techniques focus on the Megablock, and the work presented here shows methods 

and algorithms for the detection, identification, implementation, and optimization of 

Megablocks (e.g., inner loop unrolling, pipelining of Megablocks). We also present an 
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extensive study of the impact of using the Megablock as a partitioning unit over a 

comprehensive set of benchmarks. 

1.3 Thesis Statement and Main Contributions 

Thesis Statement: We can build a system which automatically moves loops, originally 

meant to be run on a general purpose processor, to a reconfigurable fabric, in order to 

improve the execution of the program according to some criteria (e.g., execution time, energy 

consumption). The loops are moved while the unchanged program binary executes in the 

processor, and by using adequate structures (i.e., the Megablock) and algorithms, it is 

possible to consider techniques (such as loop pipelining) not previously considered for 

dynamic mapping computations to reconfigurable fabrics. 

The focus of this thesis is on the use of DHSP in embedded systems. The main 

contributions of this thesis are: 

• It proposes the Megablock, a repetitive pattern of instructions that represents a path in 

the execution flow. 

• An algorithm for detection of Megablocks based on a pattern-matching technique 

which can be fully agnostic to the instruction format of the target GPP; 

• A graph-based, architecture independent, intermediate representation for Megablocks; 

• A scheme for applying an if-conversion technique to transform code such that it can 

expose more useful Megablocks when dealing with control-intensive applications; 

• Proof-of-concept implementations for several of the proposed ideas and evaluation 

using an FPGA board; 

• A technique which pipelines the iterations of Megablocks in hardware; 

• An extensive study of the impact of the Megablock over a comprehensive set of 

integer benchmarks from embedded computing; 

The results of this thesis have contributed to a number of publications [22-28]. 

1.4 Organization 

The remainder of this thesis is organized as follows: 

Chapter 2 introduces the concepts needed for the subsequent chapters of this thesis. The 

covered subjects include compilation in general (both static and dynamic), the 

processor/coprocessor paradigm, and reconfigurable hardware. 
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Chapter 3 introduces several research efforts in the fields related to our approach, such as 

approaches based on traces, runtime reconfiguration, and binary translation. Furthermore, we 

describe in detail three relevant approaches which focus on dynamic partitioning for 

reconfigurable architectures. All the three approaches transparently move instructions being 

executed in a General Purpose Processor (GPP) to reconfigurable hardware, bearing in mind 

embedded systems as a target. 

Chapter 4 describes the Megablock, a repetitive pattern of executed instructions found in 

the trace of a program. In this chapter we propose the Megablock as a partitioning unit for 

moving sequential code to the parallel computing model provided by RPUs and compare  

with the partitioning units used in other works. The chapter also presents an algorithm for 

detection of Megablocks, proposes an Intermediate Representation (IR), and introduces 

source-to-source transformations to detect additional Megablocks. 

Chapter 5 presents practical aspects related to the implementation of Megablocks. We 

explain how to build the Intermediate Representation (IR) introduced in Chapter 4, as well as 

introduce a set of transformations which can be applied over the IR. Although the detection of 

Megablocks can be done offline, during a profile phase, we still need a method to identify 

these previously detected Megablocks at runtime, when the application executes. In this 

chapter we propose two methods for runtime Megablock identification. Finally, we present 

several architecture models capable of implementing Megablocks, and explain how we can 

augment a Megablock-enabled architecture to support pipelining of Megablocks. 

Chapter 6 presents extensive results using the techniques introduced in previous chapters, 

over a comprehensive set of benchmarks. We present results about Megablock coverage, 

consider several scenarios regarding Megablock mapping (i.e., baseline results, if-conversion, 

graph transformations), and show results for pipelined Megablocks.  

Chapter 7 concludes the thesis and presents ideas on how to expand the current work. 

Finally, we include three appendixes that present a proof-of-concept used to evaluate some 

of the techniques presented in this thesis, additional results, and a brief mention about the 

most important software tools developed for this thesis. 
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2  Background 

The purpose of this chapter is to provide the core concepts needed to understand Dynamic 

Hardware-Software Partitioning (DHSP). The covered subjects include compilation in general 

(both static and dynamic), the processor/coprocessor paradigm, and reconfigurable hardware. 

2.1 General Purpose Processors and Execution Flow 

General Purpose Processors (GPPs) have been the central components of computing for 

the past decades [29]. High-level languages and compilers make GPPs relatively easy to 

program and many of today’s applications run on GPPs. 

Each GPP has an associated Instruction Set Architecture (ISA) [29], which defines the 

programming part of the GPP: data type support, allowed instructions, available registers, etc. 

The binary representation of the set of instructions directly supported by a GPP is called the 

machine language, and the human-readable version of the machine language is called the 

assembly language. 

A program is formed by a sequence of instructions, laid out sequentially, and uniquely 

identified by an instruction address. When a program runs on a GPP, each executed 

instruction can be viewed as a step given by the program. By default, the GPP executes 

instructions in sequence. However, certain instructions can change the flow by instructing the 

GPP that the next instruction to be executed is several instructions ahead, or several 

instructions before in the sequence. The change of the execution flow is typically 

implemented by jump/branch instructions, which are commonly referred to as control-flow 

instructions. 

There can be conditional or unconditional branches. Jump instructions (usually referred as 

unconditional branches) always change the execution flow. Conditional branches depend on a 

condition to change the execution flow (e.g., jump if the value of a certain register is zero). 

Conditional branch instructions define branching points in the code. A branch is a sequence of 

instructions that is executed if the condition of the branch instruction is met. Those branch 

instructions represent a point where the execution flow will take one of two paths (or more, if 

the destination address when the branch is taken is a variable). To make a distinction between 
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a jump/branch to an address after the jump/branch instruction and a jump/branch to an address 

before the jump/branch instruction, the former is called a forward branch, while the latter is 

called a backward branch. 

The sequence of instructions executed by the GPP during an execution of a program is 

called a program trace. The trace represents all the paths and choices of a particular program 

execution. Note that different executions can generate different traces, depending, for 

instance, on the branches taken during the program execution. 

Associated to jumps/branches is the basic block [30], a block of code with a single entry-

point and a single exit-point. It usually corresponds to the sequence of instructions between 

the instruction executed after a branch, and the next jump/branch instruction. 

2.2 Data Hazards 

Most GPPs follow the Von Neumann model [31], which assumes that instructions are 

executed sequentially, typically following the order indicated by the program/compiler. 

However, one can improve performance by reordering some instructions. When reordering 

instructions, it is fundamental to maintain the original functionality of the program. An hazard 

happens whenever there is a data dependence between instructions, and a reordering of those 

instructions changes the correct behavior of the program [29]. Consider two instructions, A 

and B, where A executes before B. There are three possible data hazards: 

RAW (read after write): When instruction B fetches a result which is written by 

instruction A, but instruction A has not completed yet, making B read a (possibly) wrong 

value. 

WAW (write after write): When instruction A and instruction B write a result to the same 

place, and the last instruction writing the result is A, instead of B. 

WAR (write after read): Instruction A reads a value which is latter overwritten by 

instruction B. Hazard happens when instruction B overwrites the value before instruction A 

could read it. 

2.3 Coprocessors 

When GPPs are not able to meet certain non-functional requirements (e.g., execution time, 

power dissipation, energy consumption), an effective way to improve the GPP system is to 

extend the GPP with a customized hardware unit, in the form of a coprocessor [8, 32]. 
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Coprocessors can perform faster than a GPP for specific tasks because, among other things, 

they allow for more parallelism, by providing additional computational units not present in a 

general case; alternative computation models which can be more efficient for certain tasks 

(e.g., data-streaming); spatial computing, by replacing sequences of instructions (temporal 

computing) by direct connections between components, diminishing the instruction overhead 

related to fetch-decode stages [33]. 

However, developing and testing hardware is significantly harder than software. When 

using target architectures consisting of a GPP coupled to a hardware unit (e.g., acting as a 

coprocessor) one identifies which program sections are most frequently executed and then 

migrates those portions to the hardware unit. This is known as hardware/software co-design 

[8, 9]. This approach is usually viable as most applications follow the 90-10 rule of thumb: 

90% of the execution time is spent on 10% of the program code [29], often found in small 

groups of instructions which are executed in loop for many iterations. Those code sections are 

known by various names, e.g., critical loops, kernels, hotspots. Most hardware/software co-

design approaches start by identifying the loops of the programs. 

2.4 Coprocessor Tradeoffs 

Consider a computing system with a GPP running a program, and that at some point the 

system is at state A. After running the program for a while, the system arrives at state B, 

changing several elements of the system, e.g., the values in the registers of the GPP, the 

contents of the main memory. As a general case, we consider that the objective of a 

coprocessor is to help the processor going from state A to state B, while allowing for a trade-

off between one or more parameters. It should be noted that it may not be necessary to arrive 

exactly at the same state B, some of the values can be temporary values which will not be 

used after. However, if the state is the same, we can guarantee that if the execution continues 

on the processor, it will be correct. State can have different meanings: for a simple embedded 

application it can refer to the actual state of the system: the values in the registers of the 

processor, of the memory at each address, etc. In a more complex system with virtual address 

space and concurrent processes, the state can, for instance, refer to the virtual state of a single 

process. 

Figure 2.1 shows some trade-offs we can achieve when using a coprocessor. The figure 

represents two common parameters, execution time and consumed energy. In case a), the GPP 
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executes the program and takes the system from a state A to a state B, consuming a certain 

amount of energy and time. Case b) consumes about the same energy, but takes less time to 

execute, while case c) takes the same time to execute while reducing the energy consumption. 

Both arrive at the same state B. 

 

Figure 2.1. Example trade-offs when using a coprocessor. 

When we go from a system state A to a system state B with the help of a coprocessor, 

tackling the problem at the same level of the considered states may provide a more fine-

grained control of the problem. This is the case when considering hardware/software co-

design: if, when working with an embedded application where the considered state is 

composed by the contents of the processor registers and of the memory, the partitioning was 

done at the level of the assembly, instead of going up to the source code; if, when working 

with a Java application where the considered state is the one given by the Java Virtual 

Machine (JVM) [15], the partitioning was done at the level of the bytecode representation, 

instead of going down to the processor implementation. 

2.5 Reconfigurable Processing Units 

One way to implement a coprocessor is to design an Application-Specific Integrated 

Circuit (ASIC). This is the solution which usually gives the best performance [34] with 

respect to area and power. However, ASICs are extremely expensive: as any Integrated 

Circuit (IC), they have initially high production costs and only become cost effective when 

mass-produced. In addition, ASICs can only do what they were designed for (the circuit is 

unchangeable after fabrication). Usually, ASICs are designed only when: the hardware unit 

will run a significant part of the computation; will be produced in high volumes; and when a 
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software-only solution would not give satisfactory results (e.g., hardware video 

encoders/decoders for established codecs, such as MPEG-2 and H.264). 

These limitations associated to ASICs strongly motivate the use of reconfigurable 

hardware [35]. Reconfigurable hardware usually takes the form of an IC with several 

computational components and reconfigurable connections. Such as the ASIC, all components 

of a reconfigurable IC are already in place and cannot be modified in the field. What makes 

the hardware reconfigurable is the capability to change, through configuration, the functions 

of the components and their connections. 

Figure 2.2 shows a possible reconfigurable fabric that can be used as an RPU in a system, 

with components represented as named boxes, connected by reconfigurable interconnect 

resources. The components can be as simple as Look-Up Tables (LUTs) and Flip-Flops (FFs) 

or as complex as Functional Units (FUs) with one or more Arithmetic-Logic Unit (ALU), 

memories or even entire General Purpose Processors (GPPs) [36]. 

 

Figure 2.2. Possible two-dimensional structure for a reconfigurable fabric (source: [36]). FU 

identifies Functional Units, MEM identifies local memories, and IOB identifies Input/Output 

blocks. 

The interconnect resources can be very simple, e.g., allowing connections between only 

some neighbor components, or more complex, e.g., allowing connections from each 

component with any other component in the fabric. Input/Output Blocks (IOBs) can be used 

for communication with components outside the RPU. Reconfigurable hardware can be 

classified into two groups according to the data-size of their components (granularity) [37]. 

Fine-grained reconfigurable hardware has components which work with data-sizes of a 
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couple of bits (e.g., LUTs, FFs). If the components have higher bit-widths (e.g., from 8 to 32 

bits), the reconfigurable hardware is usually considered coarse-grained. Finer granularity 

means more flexibility on one hand, and higher overhead on the other. 

The degree of flexibility provided by the components and connections of an RPU 

determines the effort needed to map computations to that RPU. An RPU with less flexibility 

in configurability is not as expressive, but requires lower mapping effort. 

The communication costs between a GPP and an RPU depend on the kind of coupling the 

RPU has with the other components in the computing system. We can consider the four 

general cases of coupling [38] represented in Figure 2.3. They are ordered from the loosest 

coupling to the tightest coupling. Loosely coupled RPUs are easier to integrate in a system, 

but usually have higher communication delays. Tightly coupled RPUs are attractive due to 

lower latencies and communication delays, but integration with the host is more invasive and 

usually implies co-designing the RPU and the GPP. 

 
 

a) RPU coupled to the I/O bus b) RPU coupled to the local bus 

 
 

c) RPU coupled to the CPU d) RPU integrated in the CPU datapath 

Figure 2.3. Types of RPU coupling with respect to the host system. 

2.5.1 FPGAs 

Field-Programmable Gate Arrays (FPGAs) [39] are an example of fine-grained 

reconfigurable hardware. Although some FPGAs can have coarse-grained components, such 
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as multipliers, their smaller and most common components are LUTs and FFs, addressable at 

the single bit level. FPGAs are mass-produced, making them relatively affordable, and their 

extreme flexibility allows for broad design space exploration. If the components of a 

reconfigurable fabric have a sufficiently fine granularity, as in the case of FPGAs, it is 

possible to implement virtually most digital hardware circuits, since their design components 

include typical basic blocks used when designing ASICs. 

To design hardware circuits for FPGAs, we typically use Hardware Description 

Languages (HDLs), such as VHDL [40] or Verilog [41]. Specific suite of tools (e.g., Xilinx 

ISE [42]) can then synthesize the hardware described in the HDL into the configuration bits 

of a specific FPGA (known as the bitstream). Between the HDL description and the 

configuration bits there is a number of important steps, commonly handled by separate 

programs [43]. 

The first step is to convert the description into logic gates, by an RTL (Register-Transfer-

Level) Synthesis tool [44]. At this point, the synthesis tool employs a number of 

optimizations, such as logic minimization [44]. The logic gates are fed to a mapper, which 

will find a correspondence between the abstract logic gates and the kind of components 

present in a specific reconfigurable device (Mapping). The next step, Placement, is 

responsible to assign each of the components in the description with a real component of the 

fabric. Then, in the Routing step, a router establishes the connections between the 

components. In the last step, the bitstream is generated. 

2.5.2 CGRAs 

Coarse-grained reconfigurable architectures (CGRAs) [37] use functional units with 

higher bit-widths (e.g., ALUs with 8, 16 or 32 bits) having native support to word level 

computing. CGRAs are an alternative to FPGAs for cases where flexibility at the bit-level is 

not necessary. By reducing flexibility, CGRAs are able to outperform FPGAs on certain 

characteristics. 

For instance, due to the extreme flexibility and their ever increasing sizes, FPGAs have 

time-consuming design cycles. Furthermore, the back-end phases are very complex as the 

tools need to deal with a high volume of information1. For large designs, the total time of the 

mapping and placement and routing process can go from several minutes to several hours, 
                                                 

 
1 For instance, a Virtex-5 XC5VLX110 needs a file of 29.1 Mbits to configure the entire device [45]. 
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depending on the effort of the algorithms. By using larger and fewer building blocks, the size 

of the mapping problem reduces drastically, as is the case with CGRAs.2 

CGRAs also have a more predictable clock frequency. Although there have been efforts 

on the development of asynchronous reconfigurable logic [48], most reconfigurable 

architectures are synchronous. In the case of FPGAs, the clock frequency is dictated by the 

maximum delay of the combinatory circuits between registers (i.e., critical path delay). This 

delay is not only dependent of the characteristics of the circuit design, but also dependent on 

the ability of the mapping tools to reduce this path. Coarse-grained arrays usually have fixed 

transfer rates between components, and a fixed-clock frequency. 

2.6 Dynamic Compilation 

Compilers [49] are programs which translate source code written in a programming 

language into another computer language (in most cases, machine language which can be 

executed by a GPP). Compilation is known as static compilation or offline compilation when 

it is performed prior to the execution of the program. 

Although the first job of a compiler is to translate between languages (or representations 

of computations), most compilers also perform transformations and optimizations to the code 

[50]. It is crucial that a compiler produces target code that is functionally equivalent to the 

source code, but the quality of a compiler is usually measured by how well it tunes the 

program to specific requirements, such as execution time, or program size. As static 

compilation is done before the program is released, the compiler can use complex algorithms 

to transform the program, bearing in mind those requirements.  

Dynamic compilation presents another approach for compilation. Steps of the compilation 

process are delayed until the execution of the program (runtime). Then, at runtime, those 

compilation steps are performed, possibly using additional information not available offline 

(e.g., specific information about the hardware which is running the program, information 

about the behavior of the program). 

Java is a widely popular language [51] that relies on dynamic compilation for a number of 

compilation steps. The program is distributed in an intermediate representation (the Java 

                                                 

 
2 There is a trend to use fine-grained reconfigurable fabrics (such as FPGAs) to implement CGRAs [46, 47], 

thus, creating an architectural layer easier to deal with. 
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bytecodes), which is written in a virtual ISA (i.e., the ISA of the Java Virtual Machine – JVM 

[15]), and compilation addressing the real processor is performed during program execution 

(known as JIT – Just In Time - compilation). Compiling during runtime allows Java compilers 

to take advantage of additional information available at runtime, as well as significantly 

improves the performance of interpreted code. 

Delaying the last part of compilation to runtime is also used to enhance portability. By 

compiling to an intermediate representation (the Java bytecodes) theoretically every system 

with a mechanism implementing the JVM can run the program. This approach has already 

been used in embedded systems to distribute the same application (e.g., software games) 

across very different models of, e.g., smart phones. Another advantage of this approach is to 

allow developers to use the same toolchain and development environment to develop 

applications, instead of using a toolchain and special compilers for each target system. 

In traditional hardware/software co-design [52], the decision of which parts of the 

program are executed in the GPP and which parts are executed to a coprocessor is performed 

at design time, and that information is encoded into the binary. An alternative approach is to 

delay this decision until the execution of the program. This way it is possible to benefit from 

dynamic compilation features, such as enhanced portability and runtime adaptation. Herein, 

we refer to this approach as Dynamic Hardware-Software Partitioning, DHSP, or simply 

dynamic partitioning (see the problem formulation in Figure 2.4) [13, 14, 53]. 

We consider at least four phases in dynamic partitioning: Detection, Translation, 

Identification and Replacement. These phases do not necessarily need to be executed by this 

order (e.g., Translation can be performed either after Detection or after Identification). 

Detection determines which sections of the application are candidates to be moved to the 

coprocessor; Translation transforms detected sequences of instructions into an equivalent 

representation for the coprocessor; Identification finds, in the program execution, the sections 

which were detected as candidates to be moved; Finally, Replacement refers to the 

mechanisms by which the execution flow moves from the GPP to the coprocessor and vice-

versa. 

Each one of these phases can implement its own set of algorithms and have different 

levels of complexity. For instance, during Detection, an algorithm can, before deciding to 

accept a section as candidate, estimate if that particular section is worth moving to the 

coprocessor, to reduce the number of candidates. Translation algorithms can use intermediate 

representations, or perform transformations and optimizations over the sequence of 
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instructions using runtime information (e.g., Intermodular Inlining [54]). Identification can 

use several heuristics to locate the detected sequences in the execution trace. The 

Replacement can be done either by direct signals to the GPP, or by rewriting the instruction 

memory. 

 

Problem formulation: Dynamic Hardware-Software Partitioning (DHSP) 

Given a computational system composed by a GPP, a coprocessor, and an 

application which executes on the GPP, dynamic partitioning analyses the 

application execution, decides which sections of the application should be moved 

to a coprocessor, and executes the application according to the decision, so that 

the global execution of the application can be improved according to some 

established criteria (e.g., execution time, energy consumption). 

Figure 2.4. Dynamic Hardware-Software Partitioning problem formulation. 

Note that the problem formulation in Figure 2.4 states that deciding which computations 

to move and executing the decision take place during program execution. However, it does 

not imply that all the necessary steps to perform hardware-software partitioning must be done 

at runtime. For instance, if the coprocessor is an RPU, the dynamic partitioning system can 

have a repository of pre-built RPU configurations, and decides at runtime which 

configurations to be used. Alternatively, a full-runtime system performs all tasks (e.g., 

detection, translation, identification, replacement) during program execution. The problem 

formulation leaves these possibilities open for different implementations. 

Being able to automatically take advantage of the coprocessors in a computing system 

without resorting to recompilation is particularly appealing to embedded systems. It is 

common for embedded systems to often rely on very specific hardware modules to meet their 

requirements. With this technique, it may become easier to take advantage of different 

accelerators or to try different hardware solutions. It can also enable seamless integration 

between applications and a family of RPUs which can vary in some particular features, such 

as local memory, and/or number of functional units. 
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2.7 Summary 

This chapter briefly introduced a number of important concepts that are used throughout 

the thesis, from static to dynamic compilation, possibly considering hardware/software co-

design, and the use of reconfigurable processing units (e.g., based on reconfigurable 

hardware) connected to a general purpose processor. 

When compared to ASICs, reconfigurable hardware is much more flexible, and 

reconfigurable fabrics such as FPGAs can virtually implement the circuits of any ASIC. This 

flexibility comes at a price though: due to the reconfiguration overhead, reconfigurable 

hardware can be slower, needs more area and dissipate more power [39]. On the other hand, 

reconfigurable hardware offers the possibility of experimenting hardware designs, and of 

applying hardware acceleration to cases which otherwise would be cost-prohibitive. Another 

untapped potential of reconfigurable hardware is that it can adapt itself to each application, 

e.g., during runtime. 

Although reconfigurable hardware promises the possibility of accelerating many types of 

applications, this promise remains partially unfulfilled, mainly to difficulties related to the 

available tools. By transparently migrating computation to coprocessors (e.g., RPUs) and 

using information available only at runtime, we see dynamic partitioning as a possible 

candidate to further bridge this gap. 

We formulated the problem of dynamic partitioning, and identified four different phases in 

dynamic partitioning: Detection, Translation, Identification and Replacement.  
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3  Related Work 

This chapter introduces relevant work related to our approach. We include approaches 

based on traces, runtime reconfiguration, and binary translation, and describe in detail three 

relevant works in dynamic partitioning addressing reconfigurable computing architectures. 

These three works transparently move instructions being executed in a General Purpose 

Processor (GPP) to reconfigurable hardware, bearing in mind embedded systems as target. 

3.1 Binary Translation 

Section 2.6 of Chapter 2 introduced dynamic compilation, using Java bytecodes as an 

example of an intermediate representation. There are cases where a computing system, instead 

of translating instructions of a virtual ISA (such as the Java Virtual Machine), uses the binary 

code for a real microprocessor [55-57]. This is called binary translation [18], and can be either 

static or dynamic. 

Approaches such as Paek et al. [58] perform loop detection by doing static analysis of the 

executable binary. In their work they decompile the code and analyze loop structures. They 

focus on innermost loops, without branches and whose iteration count can be determined 

statically. They also consider loop unrolling when the iterations of both the inner and the 

outer loop can be determined statically (only the inner loop is unrolled). The target 

coprocessor is a data-flow oriented CGRA which supports context pipelining. After loops are 

detected, the binary is modified to include the CGRA mapping and communication routines. 

One example of dynamic binary translation is the Crusoe microprocessor. The Crusoe 

translate and executes binaries written in the Intel x86 ISA on the fly, to a microprocessor 

which not only has different ISA, but a substantially different architecture [21]3. The Crusoe 

uses a Very Long Instruction Word (VLIW) processor, an architecture designed to take 

advantage of Instruction Level Parallelism (ILP). The Crusoe is able to execute native x86 

                                                 

 
3 Pentium microprocessors also uses binary translation, to translate instructions of the old x86 ISA to the 

new ISA of the microprocessor [19]. 
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code at a performance level similar to a superscalar processor, while achieving a lower 

thermal envelope. 

3.2 RPU Architectures 

As previous work has shown, if we move critical loops to dedicated hardware units, we 

can have significant performance improvements [13]. There have been many proposals on 

accelerators using reconfigurable computing concepts, as well as a plethora of architecture 

designs. Most well-known examples include Matrix [59], RAW [60], Adres [61], REMARC 

[62], Morphosys [63], GARP [64], Chimaera [65], Piperench [66], XPP [67] and Rapid [68]. 

Each one of these architectures proposes unique features and tries to address faster execution 

and/or energy savings for a set of algorithms and/or domain-specific applications. Currently, 

there is a wide choice of hardware accelerators, and FPGA-based reconfigurable fabrics are 

an accessible technology to implement them. However, a significant hurdle for reconfigurable 

architectures is the significant cost of mapping the programs. 

In a first phase, the portion of the program that executes on the reconfigurable hardware 

needs to be translated to the new architecture. In some cases, the reconfigurable architecture 

needs to be manually programmed, using an HDL like-language, while in other cases, the 

authors provide compilers specifically developed for the architecture, which either support an 

already established language, or a new high-level specification (e.g., as in MorphoSys [63]). 

However, writing a good compiler is not trivial, and it is to be expected that compilers for 

new and substantially different architectures are not as mature as compilers for well-

established architectures, which already have many years of development and testing4. 

After the translation of program portions to the reconfigurable architecture, the program 

running on the GPP needs to call the custom hardware. These calls can be inserted in the 

executable code either manually by a programmer, or automatically by a compiler. There has 

been a substantial effort in the development of compilers which statically partition a program 

into software and hardware parts, and automatically generate the HDL description of the 

hardware parts [70, 71]. With an important role in that process are the C-to-gates compilers, 

                                                 

 
4 Projects like LLVM [69] can partially solve this problem. LLVM is a compiler infrastructure which 

provides front-ends to well-known languages, and abstracts the target architecture from most phases of 
compilation, only introducing it when absolutely necessary. 
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which focus on synthesizing hardware modules, usually written in an HDL, from code written 

in a subset of C [10, 11]. 

3.3 Dynamic Partitioning Approaches 

The execution trace, the sequence of instructions executed by a program, is the starting 

point of many dynamic approaches. It is possible to extract information from traces which is 

only available at runtime, such as the frequency of taken paths, and use that information to 

generate more efficient code. 

Bala et al. [72] developed Dynamo, a system which transparently improves the code 

executed by a GPP. Dynamo monitors the execution of the native instructions of a GPP and 

uses runtime information to make native-to-native transformations. The working unit of 

Dynamo is the fragment, a dynamic version of the superblock [73]. A fragment is formed by a 

sequence of executed basic blocks which do not jump backward. By speculatively executing 

fragments, Bala et al. improved the execution time of code which was compiled with default 

compiler optimizations. 

Gal et al. [74] used a trace-based compilation technique for dynamically-typed languages 

(e.g., JavaScript, Python). In such languages, the types of expressions are not statically 

defined and may vary during runtime. To cope with this, compilers produce code capable of 

resolving any kind of type combinations. The objective of their work is to reduce the 

expressions to the types being actually used by the application at runtime, producing more 

efficient code. They work over the granularity of the loop, based on the expectation that they 

represent a big portion of the program execution, and that inside loops, the types of the values 

are mostly invariant. Loops are detected and built over the execution trace by monitoring 

backward branches. They propose a structure called trace tree, which represents the hot-paths 

of a loop. 

Below we examine in detail three relevant approaches which are closely related to the 

work in this thesis: Warp [13], CCA [75] and DIM [14]. 

3.3.1 WARP 

Lysecky et al. propose the Warp Processor [13], a system which implements a full-online 

dynamic partitioning approach. The system includes a GPP, a fine-grained RPU 

(Reconfigurable Processing Unit), and a dynamic mapping module. The dynamic mapping 

module automatically detects critical loops on the GPP and maps the corresponding binary 
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code to the fine-grained reconfigurable, logic-based, RPU. Originally, the authors considered 

a system which used a common hardcore GPP. In a posterior work they used the same 

technique to improve the competitiveness of soft-core processors in embedded systems [76]. 

The Warp architecture is composed by a GPP, with separated buses for data and 

instructions (Harvard architecture), a profiler, an on-chip CAD (Computer-Aided-Design) 

module, and a custom-made FPGA acting as the RPU (see the block diagram in Figure 3.1). 

The profiler is non-intrusive – i.e., the profiler does not use instrumentation, which 

changes the binary code and/or the processor execution to introduce instructions which gather 

information – and is attached to the instruction bus. The profiler is lightweight, and only 

monitors the addresses of the executed instructions.  

The on-chip CAD Module is connected to the instruction bus and receives information 

from the profiler. It is responsible for translating the loops detected by the profiler to the 

FPGA. The CAD module is implemented as another GPP running the mapping tools 

developed by the authors of Warp. 

 

Figure 3.1. Block Diagram for the WARP Processor (source: [13]). 

The custom FPGA, called Warp-Oriented FPGA (see Figure 3.2), besides the configurable 

logic, also includes a data-address generator (DADG) with loop control hardware (LCH), 

three input-output registers, and a 32-bit multiplier-accumulator (MAC). All memory accesses 

from the FPGA are handled by the address generator, and the LCH is used to reduce the loop 

overhead of critical kernels. A 32-bit MAC is included as it is an operation used frequently 

enough to justify dedicated hardware, instead of an implementation using the reconfigurable 

logic. 
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Figure 3.2. Block Diagram for the W-FPGA (source: [13]). 

The reconfigurable logic of W-FPGA was designed to minimize the time spent during 

hardware synthesis, and has significant differences from the reconfigurable logic employed in 

commonly available FPGAs. Instead of optimizing the performance of Look-Up Tables 

(LUTs), e.g., by using LUTs with 5-6 inputs [77, 78], and of Configurable Logic Blocks 

(CLBs), e.g., by using clusters with 8 LUTs [79], they focused on a simpler design which 

allows faster mapping and placement. This resulted on a reconfigurable architecture which 

uses 3-input/2-output LUTs and CLBs with 2 LUTs each. Furthermore, the routing was also 

simplified, and each CLB is connected to a switch matrix which has 8 channels – 4 for the 

adjacent nodes, and 4 for routing between every other switch matrix. As a result, the mapping, 

placement and routing algorithms developed for W-FPGA are significantly simpler and faster 

than the ones used on common FPGAs. 

The Warp system maps hotspots consisting of innermost short loops to W-FPGA. To 

detect those loops, they take advantage of the fact that there is a high correlation between 

short backward branches in a program and the beginning of a loop. Every time the profiler 

detects a backward branch, the address is stored in a small cache (16 entries of 8 bit values) 

which monitors branch frequencies. If the value of a branch frequency saturates, a shift is 

performed to all values, to maintain a list of relative frequencies. When an address reaches a 

certain threshold of saturations (the value of 10 is referred in [76]), the address is considered 

as the beginning of a critical loop. 

After a loop is detected, the on-chip CAD Module reads the binary code with the 

instructions of the loop. It then transforms the loop instructions into hardware descriptions, 

and the hardware descriptions into a bitstream. The bitstream is then loaded into the custom 

FPGA (i.e., W-FPGA). There are, however, constraints in the implementation of each loop. A 
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loop may include accesses to the memory, but they must follow regular access patterns. In 

addition, the number of iterations of the loop must be known (however, the loop can terminate 

at any iteration). 

The on-chip CAD Module does extensive transformations to loop instructions before they 

can be translated and run in the W-FPGA. The first step of the translation is decompilation. 

The CAD tool converts each binary instruction of the loop into an equivalent register transfer 

representation, which is independent of the instruction set. This representation is used to build 

a control flow graph (CFG) and a data-flow graph (DFG), then merged into a Control/Data 

Flow Graph (CDFG). The CDFG is used to apply standard compiler optimizations and to 

detect higher-level constructs such as loops and if statements [80]. 

The next step is Partitioning (as represented in Figure 3.3). The kernel identified by the 

profiler is analyzed, and by using a simple partitioning heuristic, which tries to maximize 

speedup and reduce energy, the partitioning algorithm decides if the kernel should be 

implemented in hardware. 

 

Figure 3.3. Binary to Hardware Translation Flow (source: [13]). 

During Behavioral and Register-Transfer Synthesis, the CDFG is converted into a 

hardware circuit description, which is in turn converted to a netlist format. The JIT (Just-In 

Time) FPGA Compilation step is similar to the traditional synthesis, mapping, and placement 

and routing, albeit adapted to W-FPGA and using customized tools and algorithms, optimized 

for runtime utilization. In Logic Synthesis, the hardware circuit is optimized. The compiler 

creates a directed acyclic graph and applies a custom two-level logic minimization [81], 
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which traverses the logic network in a breath-first manner, applies logic minimization at each 

node and uses a single expansion phase. 

During Technology Mapping, the compiler transforms, in a first-pass, the netlist 

representation to match the 3-input/2-output LUTs of W-FPGA, using a greedy hierarchical 

graph-clustering algorithm. During a second-pass, the compiler packs the LUTs into CLBs. 

In the Placement step, the compiler uses a greedy dependency-based positional algorithm 

to place the CLB nodes onto the configurable logic. Initially, the algorithm determines the 

placement of the CLBs relatively to each other. After that, the result is superimposed and 

aligned. 

Finally, the compiler uses a custom router [82, 83] to perform the Routing. The router uses 

the same algorithm used in the Versatile Place and Route's (VPR) tool [43, 84], with the 

routing model cost of the W-FPGA. The algorithm allows the overuse of routing resources 

and illegal routes, and eliminates illegal routes by repeating routing iterations. The algorithm 

is greedy and uses the adjusting cost to discourage selecting the same initial route during 

subsequent iterations. After determining a valid global routing, the compiler builds the routing 

conflict graph, having the W-FPGA technology into account. To resolve conflicts, it uses a 

simple and greedy vertex coloring algorithm [85]. 

If the translation succeeds, the program is updated by the Binary Updater (see Figure 3.3). 

The original program is modified by introducing a branch instruction which will jump to code 

responsible to initialize W-FPGA, instead of executing the instructions of the loop. The code 

for initializing the reconfigurable hardware includes an enable signal to W-FPGA, code to 

power-down the GPP into sleep mode and a jump to the instruction immediately after the end 

of the original software loop (skipping in this case the execution of the loop instructions by 

the GPP). When the W-FPGA finishes execution, it sends an interrupt which wakes up the 

processor and resumes its execution. The processor and W-FPGA execute in a mutually 

exclusive mode, i.e., only one of them can be executing at any given time. This simplifies 

access to data, avoiding data coherency and consistency issues. Furthermore, the authors refer 

that they have not found a significant advantage in parallel execution of both components for 

the tested cases. They also consider that only a single application (and single-threaded) is 

executing in the system. 

For the experimental results with a hardcore CPU, they used two ARM7 processors, one 

as the GPP and one for the CAD module. The mapping algorithms needed, on average, 1.2 

seconds to complete on a 40 MHz ARM7. They compared speedup and energy reduction of 
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critical regions for 15 selected benchmarks related to embedded systems. The applications 

considered are from NetBench [86], MediaBench [87], EEMBC [88], Powerstone [89] and 

their own on-chip logic minimization tool, ROCM [81].  

When compared with a common FPGA (Xilinx Virtex-E), W-FPGA presents 1.5× faster 

clock frequencies and 25% less power. Overall, when compared to the execution of the 

benchmarks on an ARM7 at 100 MHz, the Warp Processor shows application speedups of 

6.3× and energy reductions of 66%, on average. They identified memory accesses as the main 

bottleneck in the tested benchmarks. 

For the experimental results with the soft-core GPP, they used two MicroBlaze processors 

[90], one as the GPP and one for the CAD module. They considered two FPGAs for 

implementation of the Warp Processor, a Xilinx Virtex-II Pro clocked at 100 MHz, and a 

Xilinx Spartan 3 clocked at 85 MHz. The mapping algorithms needed, on average, 11 seconds 

to complete the mapping of a single kernel. They compared speedups and energy reductions 

of critical regions for 6 selected benchmarks from EEMBC [88] and Powerstone [89]. When 

compared to the execution of the benchmarks in a single MicroBlaze at the same frequency as 

the corresponding Warp Processor, they present speedups of 5.1× and 5.9× on average, at 100 

MHz and 85 MHz, respectively. They note that the higher speedup of the Spartan3 is due to 

the lower operating frequency of its base case. Of the six benchmarks used, one (brev) had a 

much higher speedup than the others. This happened because the critical kernel of the brev 

benchmark has intensive bit-manipulations which map very efficiently on an FPGA. Without 

considering this benchmark, the speedups are 3.3× and 3.6×, on average, at 100 MHz and 85 

MHz, respectively. 

The energy consumption depended on the dynamic partitioning scenario. In a scenario 

where a significant portion of the execution runs on the FPGA, and the changes between the 

GPP and the FPGA are infrequent, they present energy reductions of 65% and 55% for 100 

MHz and 85 MHz, respectively. In a similar scenario, but where the changes are continuous, 

they present energy reductions of 55% and 24% for 100 MHz and 85 MHz, respectively. 

They justify the lower performance on energy of the Spartan3 to its lower static power 

dissipation. Since it is significantly lower than the static power dissipation of the Virtex II-

Pro, the dynamic power dissipation of the MicroBlaze, which runs the CAD tools, represents 

a much higher overhead in the case of the Spartan3. 

Finally, the authors compared the Warp Processor using the MicroBlaze with existing 

hardcore processors for embedded systems. For the Warp Processor, they only considered the 
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Spartan3 implementation, since they considered that the Virtex-II Pro dissipates too much 

power for embedded systems (e.g., it often exceeded 1W). For the hardcore processors, they 

considered a set of ARM processors (ARM7, ARM9, ARM10, and ARM11). For the same set 

of benchmarks, the Warp Processor with a MicroBlaze at 85 MHz had energy consumption 

comparable to an ARM10 at 325 MHz but executed 1.5× faster on average. 

3.3.2 CCA 

The Configurable Compute Accelerator (CCA) [91] is a special-purpose unit for executing 

complex instructions. It was designed to be integrated in the pipeline of a GPP (see the block 

diagram of Figure 3.4). However, instead of predefined special instructions, it executes 

arbitrary Data-Flow Graphs (DFGs). Also, instead of directly accessing the CCA through 

programming, the unit itself has hardware support for binary translation, which automatically 

moves code from the instruction pipeline to CCA. 

Generally, a CCA consists of a 2-D array of simple functional units (FUs) interconnected 

in a feed-forward manner. The implementation of a CCA, such as other RPUs, has a fixed 

number of FUs and a fixed organization, but the operations and connections between the FUs 

are configurable. There can be many CCA implementations, depending on the target domain. 

Using results from previous work efforts [92, 93] and information from benchmark profiling, 

the authors propose the CCA shown in Figure 3.5 [91]. It is a triangular shaped matrix of FUs, 

where the FUs in any given row are homogeneous, and alternately, each row supports either 

arithmetic and logic operations, or only logic operations. Between each two adjacent rows of 

FUs, there is a crossbar for communication. This particular CCA presents some constraints: it 

is limited to 4 inputs and 2 outputs, does not support memory operations (e.g., load/stores), 

and the output of an FU can only be used as the input of an FU in the adjacent row. 

The objective of CCA is to execute small clusters of simple instructions as one macro-

instruction. To detect which portions of code should be moved to CCA, the mapping system 

performs subgraph discovery. To perform subgraph discovery, the instructions need to be 

transformed into a DFG representation first. Then, they run a subgraph discovery and 

selection algorithm in the resulting DFG, which substitutes clusters of the nodes using basic 

instructions (e.g., ADD, XOR ...) with macro-instructions which can be executed in CCA.  

The authors studied the use of the CCA of Figure 3.5 (which has depth 4) as well as other 

CCAs [91]. They discovered that, for the selected benchmarks, 99.47% of the graphs could fit 

in a CCA with depth 7 or less. However, CCAs with lowers depths are attractive because they 
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have lower latencies. They have also considered several CCA implementations with depth 4, 

a case which can handle 82% of the graphs. 

 

Figure 3.4. CCA-Enabled Processor Block Diagram (source:[53]). 

 

Figure 3.5. Example of a CCA Implementation (source:[53]). 

The CCA approach proposes two methods for subgraph discovery: (a) using an optimal 

algorithm during compilation (static), and (b) using a heuristic during instruction retirement, 

in a trace cache (dynamic). The static method is employed offline, using code profiling and an 

optimal subgraph discovery algorithm developed by the authors and based on previous work 

[75, 94]. After detection of the graphs, the compiler modifies the binary so that the clusters of 

instructions which were chosen as good candidates for CCA graphs, i.e., clusters of 
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instructions that form a graph candidate to be mapped to CCA, can be easily identified. 

Initially, the authors used two new ISA instructions, CCA_START(liveout, height) and 

CCA_END to surround the cluster of instructions. In a subsequent work [53], they discarded 

those two instructions and instead encapsulated the cluster of instructions in a subroutine, and 

called it with a special instruction (BRL’). The authors refer that in case the binary needs to 

run in a processor which does not have a CCA, the special instructions CCA_START  and 

CCA_END can be converted to NOPs, and the BRL’ instruction can interpreted as a normal 

“branch and link”. 

For the dynamic detection approach, the authors propose a simpler algorithm for graph 

discovery [91]. Instead of doing an optimal search, which is too time-consuming for runtime, 

the algorithm uses a heuristic. Starting at a seed node, the graph grows upwards, towards the 

parent nodes. Each time a parent node is added, the new graph is considered as a mapping 

candidate. If adding a parent node violates CCA constraints, the node and its parents are 

discarded. When transforming the binary instructions to a graph, each operation is associated 

with a ‘slack’ value. A lower slack value of an operation represents a less critical operation to 

the dependence height of the DFG. The slack value is used to choose between multiple 

parents (lower slack values take priority). As the discovery of the graphs to map is done 

bottom-up, starting at a single node and growing up through its parents, the graphs will 

resemble the upside-down triangular structure of CCA. 

The heuristic is applied in the instructions of a special trace cache, implemented using the 

rePlay framework [95]. This particular trace cache is called a frame5 cache, which is similar 

to a trace cache, but is built upon predictions on the branches of several basic blocks. While 

the program runs, the frame cache builds the frame. After the frame is built, if at any point 

during execution any of the predictions happens to be wrong, the frame is discarded. This 

way, a frame can transparently cross basic block boundaries. 

From the two approaches for detection that authors initially considered the, i.e., static and 

dynamic, they concluded that the frame cache requires a large amount of resources and 

power, which caused dynamic subgraph discovery using a frame cache prohibitive for 

embedded systems. In a subsequent work [53], focused on embedded processors, they 

                                                 

 
5 A frame can be seen as a large basic block, with one entry-point and one exit-point. Branches inside the 

frame are converted to control flow assertions, and if one these assertions is triggered, the entire frame is 
discarded. 
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propose a general architecture framework for connecting any kind of CCA to a GPP, as well 

as a dynamic partitioning approach where the detection phase is done offline, during 

compilation. 

Clark et al. [91] propose three possibilities for the execution stages where the 

Replacement and Translation can be done: during instruction decoding, inside the frame 

cache, and during instruction retirement. They concluded that the first case has low hardware 

overhead, but as it is done in the decode stage we are severely restricted by the stage latency. 

Moreover, it does not allow the crossing of basic block boundaries. The experimental results 

show that, of the three considered cases, the first case is the approach with the worse 

performance [91]. The second approach allows a better performance, but has a higher 

hardware overhead [91]. A subsequent work [53] focuses on a combination of the third 

approach with additional information from a detection phase done during static compilation. 

As this case is the approach they considered the best solution for embedded processors, we 

will describe herein the mapping algorithm behind the third case. 

The mapping algorithm takes a sequence of instructions, detected as a complex instruction 

for CCA, and generates the configuration bits of the corresponding subgraph which can be 

obtained from this sequence of instructions. Figure 3.6 shows how the algorithm translates a 

sequence of instructions into a CCA configuration. The BRL’ instruction in the Subgraph 

Code box signals a new subgraph. This subgraph was previously detected by the compiler and 

respects a number of characteristics: the number of inputs (or live-ins) and outputs (or live-

outs) have predefined limits; all memory operations inside the graph are relative to temporary 

values (i.e., spill code); the subgraphs may cross basic block boundaries by using downward 

code motion during compilation. 

The algorithm uses a Current Producer table, updated at each step, and which maps for 

each register and at that given time point, which FU produced the most recent definition of 

that register. The algorithm reads each instruction of the subgraph code in sequence, one at a 

time. For each instruction, it checks its input operands. If a given register in the input operand 

of the instruction is not in the Current Producer table, it is added to the list of inputs (Step 1 

and 3 in Figure 3.6). The placement of an instruction is determined by which FUs produce a 

result used by that instruction. If an instruction needs a result from a previous FU, the 

placement of that instruction has to be, at least, immediately below the FU with greatest 

depth. For example, the instruction in Step 4 (see Figure 3.6) depends on the result of FU B, 
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which is in the first row of CCA. Thus, the instruction has to be placed on the second row of 

the CCA. The output operand of an instruction is marked in the Current Producer table.  

CCA does not support memory operations (i.e., load/store operations), but has a special 

table to support spill code elimination. It is guaranteed by the compiler that any load/store in a 

subgraph refers to a temporary value that will not be used outside of the subgraph. Every time 

there is a store inside a subgraph (Step 2 in Figure 3.6), the table stores the memory offset of 

the store, as a way to identify the store, and the FU which has produced the value to store. 

When a load happens (Step 5 in Figure 3.6), the algorithm uses the information in the table to 

identify which FU has the needed value and correctly update the Current Producer table.  

 

Figure 3.6. Mapping a subgraph into CCA (source: [53]): in the left are shown a sequence of instructions 

representing a subgraph code (top) and a CCA structure (bottom); in the right side of the subgraph code 

are shown the steps performed by the mapping algorithm. 

As the CCA architecture is not pre-determined at compile time, the detection phase can 

extract subgraphs which will not map to a particular CCA. If a CCA does not have enough 

resources (e.g., FUs) to implement a particular subgraph, the mapping aborts and the 

sequence of instructions execute in the GPP. 

After a subgraph is successfully mapped to CCA, Replacement is done by updating the 

entry of the corresponding branch on the Branch Target Address Cache (BTAC) represented 

in Figure 3.4. Branches to this location will trigger CCA execution. 

For the experimental results, they present the speedups obtained using 29 selected 

benchmarks. The speedups were calculated as the ratio of execution cycles without and with 
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CCA. They use benchmarks taken from SPECint2000 [96] and MediaBench [87] repositories, 

and also include four encryption algorithms (3des, blowfish, rijndael, and rc4). 

The results, achieved by simulation, revealed a maximum speedup of about 1.6×, and an 

average speedup of about 1.2×, with a CCA with 4 levels and using dynamic detection and 

translation [91]. When using the mixed static detection/dynamic translation of the most 

recent approach, they could improve the average performance to 1.60×, 1.91× and 2.79× for 

the SPECint2000, MediaBench, and encryption benchmarks, respectively, while using less 

hardware resources (in this case they do not use the frame cache) [53]. 

When comparing the first two approaches used for graph discovery, the authors concluded 

that the static detection was consistently better than dynamic detection. This was expected, 

since the static detection uses an optimal algorithm instead of a heuristic. However, the 

differences in the results obtained between the two approaches were minimal – both 

approaches achieve an average speedup between 1.2× and 1.3×. The authors explain the 

similar results by referring that they used an Instruction-Set Architecture (ISA) which has few 

registers (16). This increases the number of memory operations, and since CCA does not 

support them, it strongly limited the amount of computation which could be done in a single 

graph, as well as the exploration space of the static detection method. In the third approach, 

they exclusively used static detection and added support for spill code elimination, which 

contributed to the increase in the average speedup of the SPECint2000 and MediaBench 

benchmarks [53]. Furthermore, the results showed that CCAs with depths greater than 4 did 

not provide significant gains in performance [91]. 

3.3.3 DIM 

Beck et al. [14] propose the Dynamic Instruction Merging (DIM) technique, a binary 

translation method to transparently move basic blocks from a general purpose MIPS processor 

to an RPU consisting of a coarse-grained reconfigurable array (CGRA). They tightly couple 

the CGRA to the processor: the CGRA works as an additional functional unit in the execution 

stage of the pipelining. They envision this architecture as a solution for accelerating 

embedded systems that need to execute many different kinds of computations. 

The authors expect the DIM architecture to run at the same frequency as the processor. 

DIM (see Figure 3.7) has direct access to the contents of the register file of the processor 

through a set of buses and multiplexers. In the proposed CGRA, the processing elements are 

organized as a 2-D array (matrix) and only processing elements in adjacent rows 
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communicate directly. Each column of the matrix has only one type of element, existing three 

broad groups for the types of elements of the CGRA. The first group is composed of simple 

logic/arithmetic instructions which can be executed in less than a single clock-cycle. The 

second group includes memory load and store operations. Memory operations are assumed to 

have a delay equal to a cache-hit. If a cache-miss occurs, the FU stops until it is resolved. The 

third group is for complex elements which can take several clock-cycles to execute (e.g., 

multipliers). Although the authors refer in a previous work that the DIM supports loads and 

stores [14], in a posterior work [97] they show another architecture for DIM where the array 

has no external accesses and is composed by ordinary processing elements, such as ALUs, 

shifters and multipliers. 

 

Figure 3.7. DIM Block Architecture and Configuration Example (source: [14]). 

Figure 3.8 shows an overview of the Replacement system used in the DIM architecture. 

The instructions are read simultaneously by the processor and by the Binary Translation Unit 

(BT). They use a mixed detection-identification-translation phase: the first instruction after 

any branch is the beginning of a basic block, and is automatically considered for execution in 

the CGRA. Thus, after a branch, the binary translation hardware starts translating instructions 

to DIM. The translation is done instruction-by-instruction, similarly to the translation in CCA 

(see previous section). It continues until it finds an instruction not supported by DIM (e.g., a 

floating-point operation) or another branch. If the binary translator mapped a sequence of 

instructions with more than three instructions (a threshold chosen by the authors) the 

translation is stored in the Reconfiguration Cache and is indexed by the value of the Program 

Counter (PC) of the first instruction of the basic block. 
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Figure 3.8. Dynamic translation in the DIM Architecture (source: [14]). 

During normal execution of the processor, the address at the PC is read by the dynamic 

partitioning hardware while it is in the first stage of the processor pipelining. If the PC 

corresponds to an entry in the reconfiguration cache, DIM is reconfigured and executed in the 

fourth stage of the pipelining (Execution) instead of executing the instructions in the GPP. If 

DIM is not reconfigured at that time, the processor stalls until the reconfiguration is 

completed. 

As previously referred, DIM uses an instruction-by-instruction translation algorithm 

similar to the one used in CCA. During translation, the algorithm keeps a number of tables 

where it stores information about the routing of the operands and the configurations of the 

processing elements. 

For each incoming instruction, the first task is to check read-after-write (RAW) 

dependences using a dependence table. This table is built with the help of the array hierarchy 

of DIM. During translation, the last write to a register from an FU is known. With this 

information, the instruction is allocated and the dependence table updated. Finally, the routing 

is determined and configured. 

The DIM authors claim that with this algorithm they can use larger windows for 

instructions, and consequently increase the ILP, when compared to the techniques used in 

superscalar processors [98]. It is also referred that the algorithm supports functional units with 

different delays and the handling of false dependencies. 

The simplest detection approach used in DIM exploits exclusively the ILP inside basic 

blocks. As this ILP is limited, the DIM authors propose a speculative version of the DIM, 

which can cross the boundaries of up to three basic blocks. The speculative version uses a 

bimodal branch predictor [99] to decide if a given branch should be added to a certain DIM 

configuration. Each PC address is associated with only one DIM configuration. Since each 
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configuration only has one entry point, but can have several exit points (basic block 

branches), it can be considered as similar to the superblock [73]. When the branch predictor 

reaches a given maximum value, the instructions inside that branch are added to the current 

DIM configuration. If a given speculation misses a predefined number of times, the entire 

configuration is flushed out. 

The DIM authors conclude that the performance of this approach, with or without 

speculation, is highly dependent of the number of instructions of each basic block. The more 

instructions a basic block has, the more instructions can be mapped to the CGRA and the 

higher the performance achieved can be. 

For the experimental results, they use as GPP the Minimips [100], a processor based on a 

MIPS R3000, and estimated DIM power dissipation and area assuming a 0.18 µm CMOS 

process. They present the speedups for MiBench [101] benchmarks, a suite of benchmarks 

specific for embedded computing. They have used the benchmarks that the architecture 

supported (e.g., benchmarks without representative floating-point computations). 

They claim an average speedup of 2.5× and an energy reduction of 1.7× [14] when using a 

CGRA with 48 rows and speculation enabled. Without speculation, they obtain an average 

speedup of about 2×. According to the DIM authors, the speedup comes from executing 

operations in parallel, and executing a small sequence (e.g., 2, 3) of simple operations (e.g., 

arithmetical and logical) in a single clock-cycle. They refer that, although the average power 

dissipation per clock cycle with and without DIM is similar, the DIM version needs fewer 

cycles to execute and consequently, consumes less energy. 

3.3.4 Overview 

All three approaches presented before, i.e., Warp [13], CCA [91], and DIM [14], show 

speedups for a number of benchmarks. Those approaches considering power dissipation also 

show energy reductions when using the RPU coupled to the GPP vs. the use of the GPP alone. 

The three efforts approach dynamic partitioning in different ways. Table 3.1 summarizes a 

number of characteristics of those approaches. 

Warp is the only approach of the three which uses fine-grained reconfigurable hardware 

(W-FPGA) as the target RPU for dynamic partitioning. Comparing to a coarse-grained, it 

trades-off higher flexibility in the circuitry that can be implemented with higher overhead. It 

is also the approach which needs a more complex partitioning stage.  
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Characteristics Warp [13, 76] CCA [53, 91] DIM [14, 97] 

Partitioning Approach 

Identify and decompile 
original loops, 

dynamically translate 
loops to the RPU 

Identify segments of 
instructions which can be 

executed as macro-
instructions on the CCA 

Identify as many 
instructions as possible, 
inside one or more basic 
blocks, to be mapped to 

DIM  

Coupling 

RPU loosely coupled to 
the GPP, both share 
instruction and data 

memory 

RPU tightly coupled to the 
GPP, RPU integrated in 

the GPP pipeline 

RPU tightly coupled to the 
GPP, RPU integrated in 

the GPP pipeline 

Granularity Fine-grained RPU (LUTs, 
MAC) 

Coarse-grained RPU 
(ALUs) 

Coarse-grained RPU 
(ALUs) 

Partitioning 

Monitors addresses of 
executed instructions for 
short backward branches, 
representing inner loops 

Detects subgraphs formed 
by clusters of instructions: 
1) dynamically, inside a 

frame cache or 2) 
statically, at compilation 

time 

Starting at any instruction 
after a branch and 

considering a limited 
number (3) of basic blocks 

Size of the segment of 
code to be mapped in 

a configuration  

Inner loops with few tens 
of lines of code 

From a couple to a dozen 
of instructions across basic 

blocks 

1) a couple to a dozen of 
instructions inside a basic 

block or 

2) across up to three basic 
blocks with speculation 

Benchmarks 
NetBench, MediaBench, 
EEMBC, Powerstone, in-

house tool ROCM 

MediaBench, SPECint, 
encryption algorithms MiBench suite 

Target Domain General Embedded 
systems 

General Embedded and 
General Purpose Systems 

General Embedded and 
General Purpose Systems 

GPP 
1) ARM7 at 100MHz 

2) MicroBlaze at 85MHz 

1) 4-issue superscalar 
ARM 

2) in-order 5-stage 
pipelined ARM (ARM-

926EJ) 

Minimips soft-core based 
on the MIPS R3000 

Size of the RPU 14.2 mm2 with 180 nm 
library (~852,000 gates) 

0.61 mm2 with 130 nm 
library > 1 million gates 

Average Speedup 
1) 6.3× 

2) 5.9× 

1) 1.2× 

2) 2.3× 

1) 2.0× 

2) 2.5× 

Average Energy 
Reduction 

1) 66% 

2) 24% - 55% 
n.a. 2) 1.7× 

Table 3.1. Summary of characteristics for the three representative approaches: Warp, CCA, and DIM. 

Both CCA and DIM are integrated in the pipeline of the GPP, while W-FPGA works as a 

coprocessor. In the case of the Warp Processor, the mapped regions of code have to execute 

for a longer time to compensate for the overhead. In fact, the Warp Processor is, among the 
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three, the only approach which considers entire loops, while CCA and DIM present speedups 

by only exploiting ILP using a small number of basic blocks and without considering entire 

loops. The Warp Processor also presents the highest speedups, not only because it moves 

entire loops to hardware, but also because the fine-grained structure can dramatically 

accelerate applications with intensive bit manipulation. 

However, Warp does not consider loop pipelining, a technique which has been extensively 

studied [48, 67, 102-104] and proven to be capable of substantial increases in performance. 

The technique has been studied in the context of CGRAs [61] and static binary compilation 

[58], although to the best of our knowledge, loop pipelining in the context of a dynamic 

partitioning system is still unaddressed. 

Both CCA and DIM use reconfigurable hardware as an additional functional unit of the 

GPP. Being tightly coupled to the GPP gives access to the processor’s registers and to the 

exploration of fine-grained instruction parallelism. However, this also means that the 

reconfigurable architecture has to work very closely with the processor architecture and the 

RPU and the GPP have to be designed together. This tightly coupling also places the RPU in 

the critical path of the processor, and limits the amount of work the RPU can do. 

All the three approaches have embedded applications as one of their targets. They couple 

the RPU to GPPs commonly found in embedded devices, and they use embedded-related 

benchmarks. Unfortunately, the overlapping among the benchmarks used in the three 

approaches is very small. Among nine different suites of benchmarks, only one (MediaBench) 

was used by more than one approach (Warp and CCA). 

Warp and CCA can easily map portions of code outside basic block boundaries, but DIM 

does this in a very limited fashion. Both Warp and CCA analyze the code before translating it 

– as it is executed, in the first case, or in a trace cache [95] / statically by a compiler in the 

second case. DIM directly translates the instructions to the hardware without previous 

analysis of the code. This approach is much lighter in comparison, but makes crossing basic 

blocks boundaries more difficult. 

The detection of the critical kernels depends on the size of the RPU. Since the Warp 

Processor addresses entire loops, it detects backward branches, which usually identify inner 

loops. CCA looks for multiple partitioning units inside the graph constructed from frequently 

executed portions of code. DIM does not have a mechanism for detection of critical kernels: it 

tries to map the currently executing instructions every time a branch occurs. 
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3.4 Summary 

This chapter briefly described the more relevant works concerning dynamic partitioning. 

We gave examples of binary translation, RPU architecture and dynamic partitioning, as well 

as a special attention to three approaches closely related to our work: Warp, CCA, and DIM. 

The results from the three approaches reveal trends which provide a useful guide to our own 

research work. They focus on embedded systems which use RISC processors as GPPs 

coupled to an RPU. RPUs based on coarse-grained reconfigurable logic showed a trade-off 

between potential for speedup and partitioning overhead. These works also show that there 

are many options in a continuum between fully static approaches and fully dynamic 

approaches, worth of being explored. 

It became clear that going beyond the basic block has a significant impact. Previous work 

has shown that the size of program sections to be moved can become greatly constrained if we 

do not cross basic block boundaries [92]. Memory operations are another significant 

constraint, and we should consider memory operations as supported RPU operations, thus 

enabling the mapping of candidate sections with memory accesses. 

In general, all approaches could achieve speedups around 2×, on average. The highest 

performance improvement is reported in the work of Lysecky et al. [13], where they achieved 

speedups around 6× with mapping of bit-level operations. However, the applications with 

intensive bit-manipulation operations are limited to very specific fields (e.g., encryption). 
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4  The Megablock 

The ultimate goal of our approach is to move sequences of instructions from the General 

Purpose Processor (GPP) to a Reconfigurable Processing Unit (RPU) during runtime. The 

sequences of instructions (code) to be moved (e.g., small groups of instructions, individual 

basic blocks, entire loops) is fundamental for an efficient Dynamic Hardware-Software 

Partitioning (DHSP) method (herein referred as dynamic partitioning). The units of code to be 

moved from the GPP to an RPU influence the RPU architecture, the potential for 

improvement, and the algorithms that can be applied during the entire process. 

We focus our attention to code units considering loops, as they are commonly the ones 

which contribute more to the overall execution time of the application. Specifically, this 

chapter presents the repetitive pattern of code proposed in this thesis, the Megablock, and 

explains why it is well-suited for moving sequential code to RPUs with a parallel computing 

model. We present an algorithm for detecting Megablocks, an Intermediate Representation 

(IR), and source-to-source transformations which enable the formation of better Megablocks. 

4.1 Motivation 

The impact of a coprocessor in the overall execution time of a program is related to the 

portion of program execution moved from the GPP to the coprocessor. Consider a metric for 

measuring program execution, such as the number of clock cycles (also known as latency) in 

a processor with fixed clock frequency. When using dynamic partitioning methods, one 

expects to move parts of the execution from the GPP to the coprocessor. We use the term 

coverage to refer to the portion of GPP execution that will be replaced by execution in an 

RPU, over the total execution when the program runs only in the GPP (see Equation (4.1)). 

Let us consider a hardware accelerator which can improve the execution time of the 

sequential code moved from the GPP to the coprocessor by a factor represented as 

SpeedupHw. The overall application speedup one can achieve, according to a particular 

coverage, is given by Equation (4.2). The speedup given by this equation is an upper bound 

which does not take into account any overhead (e.g., communication overhead). 
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Figure 4.1a) shows overall application speedups according to the percentage of execution 

that is moved to the coprocessor for several values of SpeedupHw. Figure 4.1b) presents 

another view of the same data, by showing the ratio between SpeedupOverall and SpeedupHw, 

according to coverage. A zero percent coverage corresponds to a speedup of 1×, while 100% 

coverage corresponds to a speedup equal to SpeedupHw. Both figures show that the overall 

application speedup is limited by the amount of execution we move to the coprocessor 

(Amdahl’s law [105]). If we consider that SpeedupHw is a very high value (e.g., infinite), we 

obtain Equation (4.3). According to this equation, with 50% coverage we can never attain a 

speedup great than 2×, to attain an overall 3× speedup we need more than 66.6%, to attain an 

overall 4× speedup we need more than 75% of coverage, etc. Thus, when moving 

computation from a GPP, it is very important to move large portions of the program 

execution; otherwise the impact of the coprocessor in the overall speedup is limited. 

 

 
Coverage =

ExecutionMoved

ExecutionTotal
× 100 (4.1) 

 
SpeedupOverall =

1

�1 − Coverage� +
Coverage
SpeedupHW

 
(4.2) 

 
SpeedupOverall-Max =

1

�1 − Coverage�
 (4.3) 

 

High coverage is not the only condition for having a significant performance impact when 

moving computation from the GPP. For instance, the coverage can be distributed among 

many small trace segments, which may produce low improvements when communication 

overhead is also considered. However, high coverage is a necessary condition to achieve 

noticeable speedups (e.g., coverage of more than 50% is needed to achieve a speedup of 2×). 

Approaches which move a set of instructions [53] or single basic blocks [14] can have 

high coverage. In this case, the impact is limited by what the coprocessor can do with that 

sequence of instructions. For instance, the speedup when moving a single basic block is 

mostly determined by its ILP, which is usually very limited [97]. 

An alternative to the case where a simple sequence of instructions is moved to the 

coprocessor, is to move entire loops [13]. Loops continuously repeat a similar sequence of 

instructions, increasing the potential for improvements when compared with a simple 
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sequence. A loop usually represents a considerable bigger portion of uninterrupted execution 

than, for instance, a single basic block. 

  

a) b) 

Figure 4.1. a) Upper bound for overall application speedup as a function of the coverage, and b) ratio 

between SpeedupOverall and SpeedupHw as a function of the coverage. 

Hardware implementing loops is usually coupled to the GPP according to the schemes in 

Figure 2.3a), b) and c). Moving computations away from the GPP enables coprocessors with 

more complex behavior, but increases communication overhead. However, as loops tend to 

execute for a longer time than a single sequence of instructions, they have a higher possibility 

to amortize the communication overhead. As loops generally have a higher potential for 

improvement than single sequences of instructions, we have chosen to explore a loop-based 

execution unit. 

Figure 4.2 depicts the Control Flow Graph (CFG) for a possible inner loop. Each block 

can represent a unit of execution, such as a basic block. In this figure, after execution of block 

A, the execution can either continue to block B or block C. After block B or block C, the 

execution continues to block D. For each additional loop iteration the executions goes back to 

block A, otherwise the loop ends. The CFG represents the static behavior of the loop. 

However, without information about the dynamic behavior of the execution, we do not know 

with which frequency the two paths are taken, or if a particular path is taken at all.  

The Warp Processor [13] implements loop-based dynamic partitioning. It detects small 

inner loops by analyzing short backward branches and retrieves the static description of the 

loop directly from the instruction memory. Structures such as the HyperBlock [106] also 

consider the static structure of a loop, but includes, for each path, the number of times it was 

taken until a certain execution point. 
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Figure 4.2. Example of the CFG of an inner loop. 

The Dynamo system [72] takes another approach. Instead of starting from the static 

structure of the code, it builds a dynamic structure called a fragment, which is inspired by the 

superblock [73]. The runtime formation of a fragment starts when a basic block does not end 

with a backward branch (i.e., there is a forward branch, or the branch is not taken). A 

fragment ends when there is a backward branch at a branching point. Fragments represent a 

single execution path composed of several basic blocks. Previous work which considers the  

speculatively execution of fragments (i.e., assumes all the basic blocks in a fragment execute, 

and uses roll-back mechanisms when the assumed conditions are not met), showed 

improvements  equivalent to the ones achieved when compiling with optimization flag –O4 of 

gcc [72]. 

The ideas behind the HyperBlock [106] , the superblock [73] and Dynamo [72] present 

good starting points for a dynamic loop structure which can be used to move code from a GPP 

to an RPU. We were very intrigued with the potential for improvement presented by the 

single path approach of the work done in the Dynamo system. Also, we consider that a 

repeatable execution path in sequential code can be interesting for a parallel computing 

model, and this has led us to focus on a loop structure, named as Megablock, with these 

characteristics. 

4.2 Megablock Definition 

The Megablock represents repetitive sequences of instructions in an execution trace. It 

typically represents a repetitive path formed during runtime. As with Dynamo’s fragment, the 

Megablock also considers an execution path. However, the Megablock is strictly a loop 

A

B C

D

Loop
Exit
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structure, which has a unit (the loop iteration) which repeats several times in sequence. The 

Megablock is also agnostic to the structure of the code and neither looks for jump instructions 

nor distinguishes between backward, forward or untaken jumps. Unlike the broader definition 

of a loop in Figure 4.2, the Megablock is a loop which continuously repeats the same 

sequence of instructions. A Megablock represents a contiguous repeating pattern in the 

execution trace, and a single execution of the pattern represents a single Megablock iteration. 

A definition of a Megablock is presented below. 

 

Megablock Definition 

Consider a statically defined program P, which is formed by the sequence 

of machine instructions [i 1i2 … im] . Each execution of the program 

generates a sequence T, called a trace, formed with possibly repeated 

instructions from P. Consider S a sequence of instructions with size m ≥ 1 

present in T (being m the number of instructions). For instance, [i 5i6i7]  and 

[i 8i2i3]  are two specific three-instruction sequences. A Megablock is a 

contiguous subsequence of T formed by a repeatable sequence S, 

represented by S{n}, being n ≥ 1 the number of times the sequence S 

repeats. E.g., if S=[i 5i6i7] and S{3} is a Megablock found in T means that 

[i 5i6i7 i5i6i7 i5i6i7]  is a contiguous subsequence in T. 

 

Megablocks have a simplified control-flow, where the same sequence of instructions 

executes in loop. In any point of the Megablock there can be guard instructions (referred 

herein as exit points), which test a condition to determine if the execution in the Megablock 

should continue. The conditions of all exit points are tested in all iterations of the loop. If any 

of the conditions fails, it signals the end of the execution of the Megablock. Consider Figure 

4.3a), which contains the C code for the implementation of a max function. The function 

contains a for loop with an if structure, and forms a CFG similar to the one in Figure 4.2. A 

possible Megablock is formed during execution of the max function when the same path of 

the “if” is taken for several consecutive iterations (e.g., every iteration after finding the 

maximum value of the array). 

Figure 4.3b) shows the sequence of MicroBlaze [90] assembly instructions that form the 

Megablock when the current value of the array is lower or equal than the maximum value up 

to that point (i.e., the expression “v[i] > mx ” returns false). This Megablock contains two 
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exit points, represented by the branch instructions of the sequence (the fourth and the seventh 

instructions). The execution in the Megablock continues as long as the condition of the fourth 

instruction is met (corresponds to testing if the current value of the array is lower or equal 

than the maximum value up to that point), as well as the condition of the seventh instruction 

(which tests the induction variable of the loop).  

 

unsigned int max(unsigned int* v, 

int n) { 

  unsigned int mx=0, i; 

  for (i=0; i<n; i++) { 

    if (v[i] > mx) { 

      mx = v[i]; 

    } 

  } 

  return mx; 

}  

 

1. 0x180 bslli r3, r4, 1026 

2. 0x184 lw r3, r5, r3    

3. 0x188 cmp r18, r3, r7 

4. 0x18C bgeid r18, 12 

5. 0x190 addik r4, r4, 1  

6. 0x198 rsubk r18, r4, r6 

7. 0x19C bnei r18, -28 

 

Figure 4.3. a) C code for a max function and b) the MicroBlaze assembly code for a Megablock 

representing one of the possible execution paths. 

4.3 Megablock Detection 

The problem of detecting a Megablock is similar to an instance of the problem of 

detecting repeated substrings, e.g., xx, with x being a substring containing one or more 

elements. This is also known as squares, or tandem repeats [107]. In our case, substring x is 

equivalent to the previous sequence of instructions S (this can be achieved by representing 

each instruction by a symbol), and represents a single iteration of a loop. Although we want to 

find patterns with many repetitions (a square strictly represents only two repetitions), we 

observed that if a sequence of instructions forms a square, it is likely that more x elements 

will follow (e.g., xxxx…). The detection method considers that two repetitions are enough to 

declare the detection of a Megablock. 

Our Megablock detection approach has been focused on schemes bearing in mind its 

suitability for runtime, either in the context of mapping or moving computations at runtime. 

There are algorithms which can find all tandem repeats in O(n log n + z), where n is the length 

of the string and z is the size of the output [108]. Another example is the use of linear time 

algorithms which uses suffix trees [109]. However, these algorithms are not suited to runtime 
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Megablock detection. Algorithms which use suffix trees need to preprocess the input string. 

Furthermore, as the stream of instructions is generated at a constant rate, the algorithm should 

have a constant processing time for each input, to be able to keep up with the GPP. 

Figure 4.4 presents the algorithm developed to meet these requirements. The algorithm 

defines a priori the maximum size of the substring x (i.e., the number of pattern elements) in 

the squares. 

 

M is maximum substring size 

MatchingFifo has size M 

CounterArray has size M, initialized to zero 

 

processElement(PatternElement) 

   for index 1 to M 

      if PatternElement equals MatchingFifo[i ndex] 

         if CounterArray[ index] < index 

            CounterArray[ index]++; 

      else 

         CounterArray[ index] = 0; 

 

   for index 1 to M 

      if CounterArray[ index] equals index 

         signal match for square with substrings  

         of size index 

 

   insert PatternElement in MatchingFifo 

Figure 4.4. Algorithm for detection of squares, up to a maximum size M. 

It uses M counters, one for each substring size, from 1 to M, and a FIFO queue with read 

access to any index, which stores the previous M elements. When a new element arrives, it is 

compared with the M previous elements. The position in the FIFO of the previous element 

being compared determines the size of the substring being detected. If there is a match, the 

counter is incremented until the size of the substring. If there is a mismatch, the counter is 

reset to zero. For each counter, if there are as many consecutive matches as the size of the 

corresponding substring, a square with substrings of that size is detected. Finally, the element 

is inserted in the FIFO. When the FIFO is full, the oldest value is discarded. 
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According to the algorithm, when processing a single input, there can exist 1 to M matches 

for squares with different substring sizes. For instance, by feeding the pattern aaaaaa to the 

algorithm, after processing the last element it will detect 3 matches, for squares with substring 

sizes 1 (a), 2 (aa) and 3 (aaa), respectively. 

We use an arbiter to select the most relevant match. For instance, to consider only inner 

loops, the priority is given to the match with the smallest substring size; to detect patterns 

with unrolled inner loops, but only when they appear inside outer loops (e.g., aabaab), the 

priority is given to the match with the highest substring size, but only if there is no match of a 

lower substring size simultaneously in the current and in the previous set of matches, to 

prevent unrolling in cases such as aaaa. 

We consider four adjustable parameters when implementing a Megablock Detector: 

maximum pattern size, type of pattern unit, unrolling of inner loops and executed instructions 

threshold. In the algorithm we limit a priori the maximum number of pattern elements of the 

substrings that can be detected. The maximum pattern size refers to this size. 

In the previous section, we indicated that the substring x is formed by one or more 

elements, and that x is equivalent to sequence S of the Megablock definition. Although we 

defined the elements of S (the contiguous repeated sequence) as single instructions, the 

elements of substring x can be coarser than instructions, to reduce the detection problem size. 

We refer to the kind of element used for detection (e.g., instruction) as the type of pattern 

unit. 

Different kinds of units can be used for detection, as long as the pattern unit represents a 

contiguous subsequence of instructions in T (with T being the sequence of instructions that 

form the execution trace). For instance, in this thesis we consider instructions, basic blocks 

and fragments as possible detection units, as all of them represent a valid contiguous 

subsequence (or substrings) in the execution trace. Consider the example in pseudo-code in 

Figure 4.5. The Megablock ‘z’ can be formed by the instructions with addresses 10, 11, 30, 31 

and 20; by the basic blocks starting with addresses 10, 30 and 20; or by the fragments B and 

C. 

According to the rules of the arbiter that receives the matches that happen each clock 

cycle, it can give priority to smaller or larger patterns (Megablocks with less or more pattern 

elements). When priority is given to larger patterns, we consider that unrolling of inner loops 

is active. Otherwise, if priority is given to smaller patterns, unrolling of inner loops is not 

active. 
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Figure 4.5. Program execution partitioning according to basic blocks, fragments, and Megablocks. 

When a Megablock is detected, we are able to determine how many instructions the GPP 

executes until the Megablock exits. The executed instructions threshold refers to the 

minimum number of instructions that should be executed by the GPP (when a Megablock is 

detected) so that the Megablock is considered for implementation. If the number of executed 

instructions falls below the executed instructions threshold the Megablock is ignored. 

4.4 Megablock Intermediate Representation 

Intermediate Representations (IRs) are widely used in compilation as a way to express 

code in a more convenient way for transformations, mapping, and code generation [49]. The 

Megablocks are formed from instructions extracted from the execution trace of the processor 

used in the target system. Those instructions can be translated to a format similar to three-

address code [49], an intermediate format commonly used when targeting GPPs. However, 

this format is ill-suited for computing models with intrinsic support to high parallelism 

degrees, as is usually the case with RPUs. Instead of translated to a three-address code 

format, the instructions of the Megablock are transformed into a graph representation, more 

akin to data-flow representations. 

z

z

01: A=0

02: B=0

03: JUMP TO 20

20: IF A<5, JUMP TO 10

10: A=A+1

11: IF A<3, JUMP TO 30

30: B=B+1

31: JUMP TO 20

20: IF A<5, JUMP TO 10

10: A=A+1

11: IF A<3, JUMP TO 30

30: B=B+1

31: JUMP TO 20

20: IF A<5, JUMP TO 10

10: A=A+1

11: IF A<3, JUMP TO 30

12: IF A<5, JUMP TO 10

10: A=A+1

11: IF A<3, JUMP TO 30

12: IF A<5, JUMP TO 10

10: A=A+1

11: IF A<3, JUMP TO 30

12: IF A<5, JUMP TO 10

13: END

A=0; B=0;
while(A<5) {

A = A+1;
if(A<3) {

B=B+1;
}

}

fragmentbasic block

Megablock

Source Code Execution Trace
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y

y

01: A=0
02: B=0
03: JUMP TO 20
10: A=A+1
11: IF A<3, JUMP TO 30
12: IF A<5, JUMP TO 10
13: END
20: IF A<5, JUMP TO 10
30: B=B+1
31: JUMP TO 20

Assembly Code
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The proposed intermediate representation contains two data structures: a directed graph 

structure, which contains nodes and connections representing the relationship between data 

and operations, as well as additional information such as exit points; and a table which maps, 

for each output of the Megablock, which operation writes the last value, according to the 

original sequence of instructions. 

The graph representation presented herein contains four kinds of nodes: Operation, Livein, 

Constant and Exit. It uses five types of connections: data, control, liveout, feedback and 

exitAddress. Figure 4.6 summarizes the available node types and the possible connections 

between nodes. 

 
 

a) b) 

  

c) d) 

Figure 4.6. Types of nodes and possible connections in a Megablock graph. 

The Operation node (see Figure 4.6a)), represents an operation of the graph (e.g., add, 

sub, mul). The Constant node (see Figure 4.6b)) represents an unchangeable, literal value 

(e.g., the integer value 100). The LiveIn node (see Figure 4.6c)) represents an external value 

which needs to be fetched before starting the Megablock execution. The Exit node (see Figure 

4.6d)) represents an exit point of the Megablock. 

There are five types of connections, described below. Note that certain types of 

connections include additional information represented herein with labels. 

data: connections which represent the flow of data between outputs and inputs of 

operations. Operation, Constant and Livein nodes can be sources of data, but the Operation 

node is the only node which can be a sink of a data connection. Constant nodes are, by 

definition, unchangeable and cannot be sinks. Livein and Exit nodes can receive data from 

other nodes, but special types of connections are used to indicate what kind of data is being 

transmitted. 

Operationdata

data
control
liveout
feedback
exitAddress

Constant
data
liveout
exitAddress

Liveinfeedback
data
liveout Exit

control
liveout

exitAddress
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We use herein a label in the format “OUT:IN ” for each data connection. OUT is the 

output index of the source node and IN  is the input index of the destination node. When the 

source of the connection is a Livein or a Constant node, the OUT value is left blank (i.e., the 

label becomes “:IN ”). For instance, in Figure 4.7 we have two Operation nodes connected 

by a data connection, which indicates that the output 0 from Operation 1 connects to the input 

1 of Operation 2. 

 

Figure 4.7. A data connection between two operation nodes. 

control: boolean value (represented as 0 or 1) from an Operation node which indicates if 

an exit point is triggered or not. Only Exit nodes can be sinks of control connections. Each 

control connection includes a label in the format “OUT”, where OUT is the output index of the 

source Operation node. 

liveout: data connection which represents the value for one of the outputs of the 

Megablock, for a particular exit. Only Exit nodes can be sinks of liveout connections. Each 

liveout connection includes a label in the format “OUT:SYSTEM_VAR”, where OUT is the 

output index of the source node and SYSTEM_VAR the name of the system variable to be 

updated. For instance, the name REG2 can represent the second general purpose register of 

the main processor. If the source node is a Constant or a Livein node, the value of OUT is left 

blank. 

feedback: data connection which represents internal updates to the values which were 

initially fetched before Megablock execution started. Only Livein nodes can be sinks of 

feedback connections. Each feedback connection includes a label in the format “OUT”, where 

OUT is the output index of the source node. If the source node is a Constant node, the value of 

OUT is left blank. 

exitAddress: when processing Megablocks, in most cases it is possible to calculate, before 

Megablock execution, from which instruction address the processor needs to resume 

execution, after an exit point of the Megablock. However, it can be the case that the address 

can only be determined during Megablock execution. The exitAddress connection represents 

the instruction address from where the processor resumes execution, for a particular exit. 

Operation 2Operation 1
0:1
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Only Exit nodes can be sinks of exitAddress connections. Each exitAddress connection 

includes a label in the format “OUT”, where OUT is the output index of the source node. 

4.5 Adapting Source Code to Megablock Detection 

Megablocks can be detected in examples with control-flow in their loop bodies (causing 

the existence of branch instructions), if the same path consecutively repeats during execution. 

However, it can happen that no patterns ever form, due to the execution path being highly 

sensitive to values of input data. Even in the case where different paths of a loop are detected 

(corresponding to different Megablocks), if the paths themselves do not repeat enough times, 

Megablocks will execute a low number of iterations per call, which can lead to excessive 

overhead, possibly outweighing the benefit of the accelerator. This can prevent the use of 

Megablocks. 

In this section we propose a set of rules for transforming source code with conditional 

statements into a straight-line code sequence, increasing the potential to detect better 

Megablocks. This transformation is commonly known as if-conversion in the compiler 

literature [29], and enables techniques such as vector-mask control, used to execute code with 

conditional execution in vector processors and GPUs. The benefit from the approach 

presented here is that it allows to perform if-conversion by doing source-to-source 

transformations, without additions to the language (e.g., pragmas) or modifications in the 

compilation tools. 

4.5.1 General Definition of the Transformations 

The main targets of the transformations are constructions of the type represented in Figure 

4.8. We want to rewrite these sections so that the compiler writes straight-line code, as 

opposed to using branching instructions. 

In their most general form, the structures in Figure 4.8 can be replaced by the 

corresponding structures in Figure 4.9. The equivalent code uses a mux binary operation, of 

the type value mux condition, where value represents any kind of data, and condition 

represents a boolean value. This operation returns value, if condition is true, or 0 if condition 

is false. In a later section, we will present concrete examples on how to implement the mux 

operation. The equivalent code in Figure 4.9 includes the boolean operators and, or and 

negation (!). 
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if(condition) { 

  a = operation; 

} 

if(condition) { 

  a = operation 1; 

} else { 

  a = operation 2; 

} 

 

if(condition 1) { 

  a = operation 1; 

}  

else if(condition 2) { 

  a = operation 2; 

} else { 

  a = operation 3; 

} 

a)  b)  c)  

Figure 4.8. Examples of the target code subject to transformation: a) single if statement; b) if-else 

statement; c) a chain of if-else statements with arbitrary size. 

a) a = (operation mux condition) or (a mux !condition) 

b) a = (operation 1 mux condition) or (operation 2 mux !condition)  

c) a = (operation 1 mux condition 1) or (operation 2 mux (condition 2 

and !condition 1)) or (operation 3 mux (!condition 2 and 

!condition 1))  

Figure 4.9. Equivalent code when applying if-conversion to a) single if statement; b) if-else statement; 

c) a chain of if-else statements with arbitrary size. 

Each case can extend the examples of Figure 4.8 to have any statements as necessary, and 

the case in Figure 4.8c) can be extended to have as many conditions as necessary. 

These transformations remove the branches because they force the loop, during each 

iteration, to execute the instructions of all paths (as opposed to execute only the instructions 

of a particular path). As such, when executing the transformed code in the GPP alone, the 

functionality is maintained, but generally the execution time will increase. However, when 

executing the transformed program in a system with support for dynamic partitioning, moving 

the new found Megablocks to an RPU can reduce the execution time, when compared to the 

original, unmodified program. 

4.5.2 C Transformations Targeting the MicroBlaze Processor 

Since we are neither modifying the source code language specification nor the compilation 

tools, the implementation of the technique is dependent on the target environment, and needs 

to be adapted to each particular case. In this section we provide transformation examples 
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when considering C as the source language, and targeting the MicroBlaze processor with the 

mb-gcc 4.1.2 compiler. Figure 4.10 shows how to calculate the term condition for the example 

a cond b , where cond is a comparison operator (i.e., >, <, >=, <=, == or !=). The 

transformation relies on the compiler resolving the condition to a boolean value without 

having to use branch instructions. This happened consistently in the tested cases when the 

comparison was done between a variable and zero. If the comparison with zero is done with 

an expression, instead of a variable, the compiler still uses branch instructions in some cases 

(e.g., when using expressions with more than one variable). 

 

a)  temp = a-b; 

condition = temp cond 0; 

 

b)  asm("cmp %0,%1,%2": "=r" (temp): "r" (b), "r" (a));  

condition = temp cond 0; 

Figure 4.10. How to calculate the term condition in C using a) plain C and b) inline assembly, when 

targeting the MicroBlaze processor. 

The example in Figure 4.10a) works when the values of a and b are signed values, and 

their values are such that during the subtraction an overflow/underflow never occurs. For a 

general case, we use the example in Figure 4.10b), which inserts the MicroBlaze assembly 

instruction cmp (cmpu when the comparison is between unsigned values). 

Figure 4.11 shows the expression in Figure 4.9a) using two possible implementations of 

the mux operation written in C. The most straightforward implementation is to implement the 

operations as a multiplication (see Figure 4.11a)). However, multiplication may become too 

expensive to be used if there are many mux operations in the transformed code. 

 

a)  a = (operation × condition) | (a × !condition); 

b)  condition = ~condition + 1; 

a = (operation & condition) | (a & ~condition); 

Figure 4.11. Applying if-conversion to a single if statement in C, when the mux operator is a) a 

multiplication and b) a logical or. 

Figure 4.11b) transforms the term condition, by inverting it and adding one. If the value of 

the term is zero, this transformation returns zero. However, if the value is one, the 
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transformation will set to one all bits of the term. After the transformation we can use the 

bitwise and operator (&) instead of a multiplication. Notice that now the bitwise not operation 

(~) is used, instead of the logical not operation (!). 

The second approach seems to be more indicated for hardware implementation, as it uses 

simpler operations. However, it can result in a longer critical path when compared with the 

first approach, depending of the latency of the multiplication. Additionally, if after obtaining 

the intermediate representation graph we can detect that one of the operands of the 

multiplication is a boolean value (0 or 1), we can modify the graph and replace the 

multiplication by a mux operation (see the mul. to mux. transformation, described in Section 

5.1.4).  

4.6 Summary 

In this chapter we described the Megablock, the loop structure we propose for moving 

instructions from a GPP to an RPU. We presented the characteristics we find desirable when 

selecting a portion of code to move to the RPU and suggested the Megablock as a candidate. 

When comparing to the partitioning approaches presented in Chapter 3 (see Table 3.1), the 

Megablock differs from them as it represents repetitive patterns of code in the trace of the 

executing program, possibly representing a loop in the original code. For small loops, we 

expect the instructions covered by Megablocks to be on par to the instructions covered by the 

partitioning method of the Warp processor [13] (the other approach which considers loops). 

However, the Megablock has the potential to include nested loops, recursive calls, and loops 

formed with irregular constructions such as gotos. In addition, as the Megablock is built using 

segments of instructions forming an execution path, it allows for dynamic optimizations 

aware of information known during runtime, as opposed to approaches which rely only on the 

static structure of the code. 

We presented an algorithm for Megablock detection, with suitable characteristics for 

runtime application, and suggested a graph intermediate representation for the Megablocks. 

Finally, we proposed a methodology which can be used to increase the quality of detected 

Megablocks without modifying the compilation tool flow, by applying source-to-source 

transformations. 
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5 Transforming and Implementing 
Megablocks 

This chapter presents practical aspects related to the implementation of Megablocks. 

It explains how to build the Intermediate Representation (IR) introduced in the previous 

chapter, and proposes a set of transformations which can be applied over the IR. 

The Detection of Megablocks can be done offline, during a profile phase. However, 

even in that case, for dynamic partitioning we need a method to identify these 

previously detected Megablocks at runtime, when the application executes. We propose 

two methods for runtime Megablock Identification, Single Address Identification (SAI) 

and Megablock Signature Identification (MSI). 

We present several architecture models capable of implementing Megablocks, and 

explain how we can augment a Megablock-enabled architecture to support pipelining of 

Megablocks. 

5.1 Graph Transformations 

This section explains how to transform assembly instructions, such as the ones used 

by the MicroBlaze processor, into the IR presented in Section 4.4. Before mapping 

segments of executed instructions such as the Megablocks to a coprocessor, we can 

apply several transformations over the segments, e.g., to expose more ILP, and/or to 

reduce the number of instructions to map. 

5.1.1 Mapping MicroBlaze Assembly to Graph IR 

As in the experiments we use the MicroBlaze processor [90] as the target GPP, the 

examples in this section show how to convert a Megablock formed by MicroBlaze 

assembly instructions into the graph IR. Note, however, that a similar approach can be 

applied to other processors. 

The first step is to extract information from each MicroBlaze instruction in the 

Megablock. For each instruction, we store information about the instruction address, the 

operation to be performed (i.e., opcode) and its operands. For each operand, it is 
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determined if it is an input or an output, the type (i.e., register or constant), and a label. 

If the operand is a constant, the label contains its literal value; if the operand represents 

a register, the label identifies the register. 

Table 5.1 presents additional information extracted from the sequence of 

instructions, used during the construction of the graph. 

 

Variable Description 

BranchTaken 
If instruction represents a branch/jump, indicates if the branch/jump is taken or not 

during Megablock execution. 

IsExit 
Indicates if the instruction represents an exit point in the sequence of instructions 

(takes delay slots into account). 

NextAddress 
The address of the next instruction that will be executed in the sequence. If 

instruction is a branch/jump, indicates the address after delay slots. 

NoJumpAddress 
The address of the next instruction. If the current instruction is a branch/jump, 

indicates the address after delay slots, considering that the branch/jump is not taken. 

Table 5.1. Additional information acquired from the instructions in the Megablock sequence. 

After all information is collected, the graph can be built by considering the 

instructions according to the Megablock sequence. Each instruction can originate zero, 

one or more graph nodes. For instance, the MicroBlaze instructions do not allow to 

represent 32-bit constant values in a single instruction (the maximum is 16-bits). The 

instruction imm is used to indicate the 16 upper bits of a 32 bits constant [90] in the next 

instruction. The imm instructions are not translated to operations, but its information is 

used to directly create 32-bit values in the intermediate representation. The other case 

where instructions do not generate an operation is when an instruction is detected to be 

a nop, (“or R0, R0, R0” is a default nop instruction in the MicroBlaze processor). 

Most instructions generate one equivalent operation. Load/store instructions and 

some jump/branch instructions are exceptions. Load/store instructions are unfolded into 

an addition, which sums a base address with the offset, and a load/store operation. 

For most jump/branch instructions, the information from the sequence of 

instructions in the Megablock is sufficient to calculate the destination address of the 

jump/branch. However, in some cases (e.g., instruction rtsd) the destination address 

depends on the runtime value stored in a register and needs to be calculated during the 

execution of the Megablock. In this case, the branch/jump instruction is unfolded into a 

comparison operation, which will test the exit point, and an addition which calculates 

the destination address. 
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With the above information it is possible to build a graph with information about the 

data connections between operations, and add the exit points of the graph. After all 

instructions are processed, the feedback connections (Section 4.4) are added to the 

graph. Finally, we build a table with information about which operations write the 

output values of the Megablock. 

5.1.2 Constant Folding and Propagation 

One possible transformation is Constant Folding and Propagation (CFP). With CFP, 

operations with only constants as inputs, or using registers whose values are determined 

as constants, are replaced by the result of the operation. This transformation can be 

applied to every operation node, and each operation node defines its own rules on how 

it should behave in the presence of constant inputs. For instance, arithmetic and logic 

operations (e.g., add, sub, and, xor) use the arithmetic and logic rules that correspond to 

their operation. 

CFP is extended to other types of operations, such as the comparisons which control 

the exit points. If an exit point has constant operands, it can be determined that the 

alternative path represented by the exit will never be taken (e.g., exits created from 

branches which represent calls to/returns from functions). In such cases, the operation 

node and the exit point can be removed. This is how CFP, applied to Megablocks, can 

remove operations related to function calls. 

Connections of the type feedback originate from operation nodes, but can only 

connect to nodes of the type LiveIn, which represent input values to be read before 

Megablock execution. If an operation replaced by the CFP has a feedback connection as 

output, the input Livein at the end of the connection can also be replaced by a constant 

value, removing an input value from the Megablock. Since LiveIn nodes represent 

inputs of the Megablock, CFP can propagate the constant value transmitted by the 

feedback connection by performing another pass over the nodes of the graph, and this 

step can be repeated every time new Livein nodes are replaced by constant values at the 

end of the pass. We named this step as Multi-Pass CFP. 

Multi-Pass CFP cannot be always applied. The graph transformed by this technique 

assumes that when the Megablock starts executing, the GPP has previously executed at 

least as many iterations of the Megablock as passes performed by the CFP (to guarantee 
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that the LiveIn nodes have the input values calculated by CFP). This can be enforced or 

not, depending on the identification method used (see Section 5.4). 

5.1.3 Identity Simplifications 

Another transformation applied is Identity Simplification. It takes advantage of the 

identity property of some operations. Opportunities to apply this transformation can 

appear in graphs created from assembly instructions since it is common for compilers to 

use the identity property to implement attributions in assembly. For instance, a high 

level instruction such as a = 10 can be implemented with an add instruction such as 

add r4, 10, 0 . 

5.1.4 Multiplication to Multiplexer 

The Multiplication to Multiplexer (Mul to Mux) transformation, with an example 

illustrated in Figure 5.1, is a form of strength reduction, where an expensive operation is 

replaced with an equivalent, less expensive operation. When we determine that one of 

the operands of a multiplication can only have the values 0 or 1, the multiplication can 

be safely replaced by a multiplexer, which chooses between the value 0 and the other 

operand. Opportunities for this transformation can appear when if-conversion is applied 

to the source code (Section 4.5). 

  

a) b) 

Figure 5.1. Mul To Mux transformation: a) graph before the transformation is applied; b) graph 

after the transformation. 

5.2 Hardware Module for Megablock Detection 

Figure 5.2 presents a hardware solution for Megablock detection, when using basic 

blocks as the detection unit. It has three main modules: the Basic Block Detector reads 

1:mul

2:add

0 or 1 input 1

input 2 1:mux

2:add

0 or 10  input 1

input 2
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the instructions executed by the processor, and detects which instructions correspond to 

the beginning of basic blocks. It outputs the instruction addresses corresponding to the 

beginning of basic blocks (signal BB_address), and a flag which indicates if the current 

instruction is the beginning of the basic block (signal is_BB_address). 

 

Figure 5.2. Hardware solution for Megablock detection. 

The Megablock Detector receives pattern elements, which in this case is the first 

address of basic blocks. It outputs the size of the current pattern, or zero if no pattern is 

detected (signal pattern_size), and a control signal indicating the current state of the 

detector (signal pattern_state). 

The module Trace Buffer is a memory that, when Megablock detection is active 

(i.e., the module is currently looking for Megablocks), stores the last instructions 

executed by the processor, their corresponding addresses, and a flag which indicates if 

the instruction corresponds to a pattern element of the Megablock (e.g., the start of a 

basic block). After a Megablock is detected, the Trace Buffer stops storing executed 

instructions and can be used to retrieve the detected Megablock. 

Figure 5.3 presents the general diagram for the Megablock Detector. It contains 

three modules: the Squares Detector finds patterns of squares according to the 

algorithm presented in Section 4.3. It receives pattern elements and detects squares of 

size one up to a maximum, using as output a flag for each square size 

(pattern_of_size_X). 
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A pattern element can trigger one or more square sizes. The module Pattern Size 

Arbiter & Encoder receives the individual pattern_of_size_X flags, chooses which 

pattern size should be given priority and encodes the chosen size into a binary string. 

For instance, when detecting only inner loops, this module can be implemented as a 

priority encoder. 

 

Figure 5.3. Diagram for the Megablock Detector. 

The module Pattern State is a state machine which indicates the current state of the 

pattern, and can have one of five values: Pattern_Started, Pattern_Stopped, 

Pattern_Changed_Sizes, Pattern_Unchanged and No_Pattern. 

Figure 5.4 presents the block diagram for a hardware implementation of the Squares 

Detector. The architecture in the figure can detect squares from size 1 up to 3, and can 

be easily extended to support larger square sizes. In the implementation presented here, 

the pattern_element signal corresponds to an instruction address. 

Each detector for a specific square size (with exception of the detector for size one) 

uses a FIFO. When FIFOs have a reset signal they are usually implemented in hardware 

using Flip-Flops (FFs), becoming relatively expensive (a FIFO needs a number of FFs 

equal to the #bits × size of FIFO). However, if it is not necessary to access the 

intermediate values of FIFOs, they can be implemented with considerably less 

resources (e.g., if an FPGA has primitives for shift registers available). When using 

such FIFOs, the reduction factor in resources can be as high as 16 and 32 (e.g., when 

using the primitives SRL16 and SLR32 in Xilinx FPGAs, respectively) sizes [110, 111]. 
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Figure 5.4. Diagram for a hardware implementation of the Squares Detector. 

5.3 Megablock Translation using the Graph IR 

Figure 5.5 presents a possible chain of steps for the Translation phase, where a set 

of assembly instructions representing a Megablock (e.g., the output of the Megablock 

Detector in Section 5.2) is transformed to an RPU configuration. 

 

Figure 5.5. Possible chain of steps in a Translation phase. 

Depending on the implementation, the chain of steps can be done during program 

execution (i.e., online), before program execution (i.e., offline) or in a mixed 

environment (i.e. a number of initial steps of the chain are done offline, and the 

remaining online). Likewise, each step in the chain can be implemented as a dedicated 

hardware module, or as a software program. For instance, in the implementation of a 

dynamic partitioning system presented in Appendix A, all the steps of the Translation 

chain are done offline and implemented in software. 

Megablock implementations usually depend on the Megablock execution starting at 

a particular instruction, the start instruction. The step Normalize decides which 
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instruction of the Megablock is the start instruction. This step receives the assembly 

representation of the Megablock as input, and decides which instruction is considered as 

the start instruction. 

Due to its repetitive nature, virtually any instruction of the Megablock can be used 

as the start instruction. In this work, we have used the following algorithm to calculate 

the start instruction: considering only instructions that correspond to pattern elements 

(e.g., first instruction of basic blocks), chose the one with lowest address, which is 

unique in the Megablock. If we cannot find a start instruction for a particular 

Megablock (e.g., all addresses appear more than one time, when considering the 

previous algorithm), the Megablock is not considered for mapping. 

The step Graph Converter transforms the assembly representation of the Megablock 

into the graph intermediate representation (e.g., Section 5.1.1). The output of this step is 

a Megablock represented as a graph (i.e. the Megablock Graph). The step Transform 

applies transformations over the graph representation (e.g., Section 5.1.2 to Section 

5.1.4). The output of this step is the graph representation of the Megablock, after 

applying transformations. 

Finally, the step Map converts the graph representation into a configuration for the 

target coprocessor. The implementation of this step is highly dependent of the target 

architecture. In this section, we present a map algorithm which can be used for the 

architectures in Section 5.5.1 and Section 5.5.4. The mapping algorithm is divided in 

two parts, placement and routing. 

Our placement algorithm has three steps, buildDistanceGraph, addDependencies 

and rearrangeGraph. Placement uses another graph representation of the Megablock, 

the Distance Graph, which can be built from a Megablock graph. The Distance Graph 

differs from the Megablock Graph in the following aspects: the placement takes into 

account timing constraints, so each node includes the latency of the operation it 

represents; since the graph is to be used to calculate the placement in architectures 

which can time-multiplex a design through several configurations, each node also 

includes information about the current configuration (i.e., configuration level) assigned 

to it (in row-based architectures, each configuration represents a row). Each connection 

between a source/sink node in a Distance Graph includes an additional parameter, 

minimum distance, which represents the minimum number of levels (i.e., rows) between 

two nodes (this value is usually dictated by the latency of the source node). 



63 

 

The first step of placement (buildDistanceGraph) is to build the Distance Graph 

from the Megablock Graph. Based on the latencies of each operation, to each node is 

assigned an initial configuration level which respect those latencies. At this point, the 

Distance Graph only has data connections. The second step (addDependencies) adds 

connections which represent dependencies between nodes (for instance, to serialize 

writes to memory, one can add connections between each store operation, representing 

the dependency). After including the dependency connections, the configuration level 

assigned to some operations may no longer be valid. We then apply the third step, 

rearrangeGraph, whose algorithm is represented in Figure 5.6. The function changes 

the configuration level values of each node so that they respect the existing connections 

and the given architecture constraints (e.g., the maximum number of memory operations 

per level/row). 

“Constraints” contains architecture constraints 

 

rearrangeGraph(DistanceGraph) 

   CurrentLevel = 0 

   while CurrentLevel <= getMaximumLevel(DistanceGraph) 

      LevelNodes = getNodesFromLevel(DistanceGraph,  CurrentLevel) 

      NodesToMove = getNodesToMoveDown(LevelNodes, Constraints) 

      for each Node in NodesToMove 

         setLevel(Node, CurrentLevel+1) 

         rearrangeNode(Node) 

       

      CurrentLevel++; 

Figure 5.6. Algorithm for the function rearrangeGraph. 

The algorithm starts at the topmost level, and iterates over each level until there are 

no more levels. In each level, the nodes of that level are identified (getNodesFromLevel) 

and tested (getNodesToMoveDown). During the test, the nodes that do not respect the 

minimum distance indicated in the connections to their parents go immediately to the 

NodeToMove list. The remaining nodes are tested for architecture constraints. If there 

are not enough resources in the level/row for the remaining nodes, the outstanding 

nodes are added to the NodeToMove list. An algorithm can decide which nodes should 
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go to the list, and which nodes should stay in the level/row. The current implementation 

uses a first-come, first-served approach. 

After deciding which nodes should stay on the current level/row, the other nodes are 

moved to the level/row below and each node is rearranged individually. Figure 5.7 

presents the algorithm for the function rearrangeNode. When a given node does not 

respect the minimum distance between itself and a parent node, the node is pushed 

down until it reaches a valid position. After achieving a level which is valid to all parent 

nodes, the algorithm is recursively applied to the children nodes. 

 

rearrangeNode(Node) 

   for each ParentNode in Node 

      NodeLevel = getLevel(Node) 

      MinimumDistance = getMinDistance(ParentNode, Node) 

      if  NodeLevel < MinimumDistance 

         NewLevel = getLevel(ParentNode) + MinimumD istance 

         setLevel(Node, NewLevel) 

Figure 5.7. Algorithm for the function rearrangeNode. 

For instance, consider the example in Figure 5.8. It represents a DistanceGraph 

created from a Megablock graph, after the first step in the placement algorithm. To each 

node was given an initial placement. The connections in the figure include the 

respective MinimumDistance. After adding node dependencies, the connection from the 

node in level 1 to the node op makes the placement of the latter invalid (underscored 

distance). Applying the rearrangeNode function to the node op, it is moved to level 3 

(parent level (1) + minimum distance (2)). Since all connections from parents to op are 

valid, rearrangeNode is applied to all children of op. 

After obtaining a valid placement for all nodes, the route algorithm presented in 

Figure 5.9 calculates the connections between nodes, and uses pass-through registers to 

communicate values between distant levels. It has one parameter, MaxCommDistance, 

which represents the maximum communication distance between levels/rows. A value 

of zero indicates an architecture which can only communicate between adjacent 

levels/rows. 
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Figure 5.8. Example of the function rearrangeNode 

route(DistanceGraph) 

    

   for each Node in DistanceGraph 

         for each ChildNode with data connection in  Node 

         NodeLatency = getLatency(Node) 

         Distance = getLevel(ChildNode) – NodelLeve l - NodeLatency  

         if(Distance<=MaxCommDistace) 

            addDirectConnection(Node, ChildNode) 

         else 

            usePassthrough(Node, Distance) 

    

   MaxLevel = getMaximumLevel(DistanceGraph) 

   for each OutputRegister in DistanceGraph 

      OutputNode = getOutputNode(OutputRegister) 

      NodeLatency = getLatency(OutputNode) 

      Distance = MaxLevel – getLevel(OutputNode) - NodeLatency + 1 

      usePassthrough(OutputNode, Distance) 

 

Figure 5.9. Routing algorithm in the Map step. 

5.4 Megablock Identification 

After a Megablock has been detected for the first time, one can identify future calls 

to the same Megablock in the instruction trace. We propose two techniques for 

Identification of previously detected Megablocks: Single Address Identification (SAI) 

and Megablock Signature Identification (MSI). 
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SAI uses the address of the start instruction of the Megablock as the identifier. 

Megablocks are identified by examining the execution trace of the GPP, looking for the 

instruction address that matches the address of the start instruction assigned to the 

Megablock. As the Megablock identification with SAI is done just by examining a 

single address of the execution trace, there is no guarantee that the Megablock is 

executing when the address is detected. 

MSI relies on using the Megablock instructions and their corresponding addresses to 

build a signature which uniquely identifies a Megablock. After identifying a signature, 

the method needs a synchronization period where it waits until the GPP executes the 

instruction which corresponds to the start address of the identified Megablock. 

To build the signature, we can use any function which can generate a unique 

identification from the instructions and/or the addresses of the Megablock. For instance, 

we can use a hash function over the start address of each unit that forms the Megablock 

although, depending on the function used, the signature can be dependent on the start 

address of the Megablock (i.e., the result of the function is different depending on the 

start element of the sequence). To avoid this, we need to use a function which generates 

a signature from a list of inputs but whose result does not depend on which input is used 

as start. For instance, a sum of all individual addresses of the Megablock units respects 

this requirement. However, since the unit addresses are values which can be close to 

each other, it is common for this function to result in a high number of collisions. An 

alternative solution is to pass each address through a hash function [112], to introduce 

variation in the inputs, and sum all results. 

Table 5.2 resumes most important characteristics of both methods. As in SAI the 

identification corresponds to the address of the start instruction of the Megablock, we 

cannot identify different Megablocks with the same start address as we would not be 

able to distinguish between them. Identification in MSI is decoupled from the address of 

the start instruction, and several Megablocks can have the same address. We can work 

around this limitation in SAI if the heuristic that assigns the start addresses takes into 

account which addresses have been used for previously detected Megablocks. 

However, MSI needs to detect if the Megablock is executing before identifying it 

(for instance, with the help of the hardware module for Megablock detection introduced 

in Section 5.2). This introduces latency, as we need the Megablock to execute at least 

two iterations before it can be identified. And after identification, we need to 



67 

 

synchronize the execution, which can take up to a single iteration. SAI can identify a 

candidate at the moment the GPP asks its start instruction, although it is more prone to 

false positives. 

Constant propagation with multiple passes assumes that the Megablock currently 

executing has run for at least as many iteration as the number of passes applied. As with 

SAI we do not have that guarantee, we can only use single pass constant propagation. 

 

Characteristic SAI MSI 

Identification Start address of the Megablock Signature made from several 
addresses 

Address of Start Instruction 
Same as identification. Only one 

Megablock for each address 

Independent of identification. 
Multiple Megablocks can use the 

same address 

Latency between Megablock 
identification and execution  

No latency At least 2 iterations 

Constant Propagation Single pass only Up to multiple passes 

Table 5.2. Characteristics of the proposed Megablock identification methods: SAI and MSI. 

A possible implementation can use either method for identification of Megablocks, 

or include both methods. For instance, an implementation can use SAI as the default 

identification method, and use MSI when SAI is not able to identify a Megablock (e.g., 

when two Megablocks have the same start instruction). 

5.5 Architectures for Implementing Megablocks 

According to the coupling taxonomy presented in Figure 2.3 of Section 2.5, we 

present two general system architectures for implementing Megablocks. Figure 5.10a) 

shows an architecture with an RPU connected to the local bus, were all modules 

communicate through the same local bus. Figure 5.10b) shows an RPU coupled to the 

GPP. In this case all communication is done through dedicated channels. We do not 

consider the coupling in Figure 2.3a), an RPU coupled to the I/O bus, since we think it 

is very similar in implementation to the case in Figure 2.3b) but with potentially higher 

latency. We also do not consider the coupling in Figure 2.3d). We think the needed 

degree of integration of the RPU with the GPP is unsuitable for implementing 

Megablocks. 

In both architectures we have a GPP, which will run the program, and an RPU 

which will execute the Megablocks. In Figure 5.10a), we consider that the GPP fetches 
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instructions through the local bus and that those instructions are intercepted by the 

Dynamic Partitioning module. 

 

a) RPU coupled to a local bus 

 

b) RPU coupled to the CPU 

Figure 5.10. General system architectures for Megablock implementation. 

The job of the Dynamic Partitioning module is to identify Megablocks in the 

instruction stream and handle the communication routines which exchange data between 

the GPP and the RPU. The module is also responsible for reconfiguring and starting the 

execution of the RPU and stall the GPP. The architecture of Figure 5.10b) is equivalent, 

but uses dedicated connections instead of a bus. 

Equation (5.1) presents the general equation for estimating the overall speedup 

achieved by the architectures when using the RPU. CPUCy represents the clock cycles 

executed by the program when using only the GPP. The denominator of the equation 

considers the execution with the GPP and the RPU and divides the execution clock 

cycles into two parts: the cycles that belong to all calls to Megablocks (MbCallCy) and 

the cycles which are executed by the GPP (CPU-SeqCy). Equation (5.2) represents the 

clock cycles taken by a single call to a Megablock. The terms of these equations are 
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defined according to the specific implementations of the architectures of the system and 

RPU. 

 Speedup =
CPUCy

∑MbCallCy + CPU-SeqCy

 (5.1) 

 MbCallCy = RPUCy + OverheadCy (5.2) 

5.5.1 General 2D CGRA 

There have been several work efforts [14, 27] which transparently move 

computations from a GPP to a CGRA coprocessor with a 2D topology, as the one 

presented in Figure 5.11. Row-based CGRAs with forward communication have been 

used as targets for GPP computation [14, 113]. They use a simple communication 

scheme that significantly simplifies the routing phase. 

Figure 5.11 shows the general architecture for a 2D RPU which can be used to 

implement Megablocks. It consists of a reconfigurable array with K rows of FUs 

(Functional Units) and forward communication between rows. The architecture contains 

an Iteration Control module, which will stop the RPU execution if an exit condition is 

activated. The FUs which can communicate with the Iteration Control module can be 

used to implement the operations that signal exits. The last row of the RPU is a row of 

output registers, which are updated with the iteration results if no exit signal is active. 

These registers are connected to the first row of FUs, which can use the results of the 

completed iteration in the next iteration. 

This architecture executes the iterations of the Megablock atomically. If an iteration 

completes (i.e., there are no active exit signals after the execution of the last row) the 

results are committed to the Output Registers. Otherwise, the results of that iteration are 

discarded and execution in the RPU stops. Atomic iterations imply that when an exit 

point is activated during an iteration, the iteration is discarded and execution continues 

in the GPP at the beginning of the discarded iteration. 

Before transferring execution to the GPP, the state of the system needs to return to 

the beginning of the last iteration.  For instance, if all changes during RPU execution are 

restricted to internal communication inside the RPU, the state of the system is contained 

in the values of the Output Registers, which can be updated only if an iteration 

completes successfully. When an iteration fails, the values of Output Registers, which 
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currently have the results of the previous iteration, are not updated by the last iteration. 

These are the results communicated to the GPP. However, if the RPU changes the state 

of a memory, any change that occurred in the last iteration has to be reverted, which can 

imply a memory rollback mechanism. 

 

Figure 5.11. General architecture for a 2D CGRA-based RPU which supports Megablocks. 

On the other hand, when iterations are atomic the architecture only needs to keep 

track of a set of output values, instead of a set per possible exit point. Furthermore, there 

are fewer restrictions when mapping the Megablock, the tools only need to ensure the 

results at the end of the iteration without the need to guarantee intermediate results; and 

when the execution returns to the processor, the instruction address where execution 

resumes is always the same, the address of the instruction that corresponds to the 

beginning of the Megablock iteration. 

Equations (5.3) and (5.4) define the terms of the speedup equation (5.2) for the case 

were we model the latency in clock cycles. When an RPU based on the general 2D 

CGRA architecture is coupled to the system architectures presented in Figure 5.10. 

They represent the clock cycles needed for a single call to the RPU. 

In equations (5.3) and (5.4), NIt is the number of iterations completed by the RPU. 

As iterations are executed atomically, the iteration where the exit point is activated will 

always be executed and discarded, which adds to the number of completed iterations. 

ItCy is the number of clock cycles the RPU needs to complete an iteration. For instance, 
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if each row of the RPU takes one cycle to execute, the term corresponds without 

pipelining to the number of mapped rows. CommunicationCy represents the clock cycles 

needed to communicate data to and from the RPU. It includes the communication of the 

values between the GPP and the RPU, as well as the RPU configuration bits. 

PartitionerCy corresponds to the additional clock cycles needed by the dynamic 

partitioning system besides communication. Finally, since the parameter CPU-SeqCy in 

equation (5.1) does not consider any part of the loop execution and we are considering 

an atomic execution of the iterations, the analytical model needs the parameter 

LastIterationInGppCy, which represents the GPP clock cycles needed to execute the 

incomplete iteration discarded by the RPU. 

 

 RPUCy = �NIt + 1� × ItCy (5.3) 

 OverheadCy = CommunicationCy + PartitionerCy

+ LastIterationInGppCy 
(5.4) 

5.5.2 Specialized Array (SAr) 

Megablocks can be translated to HDL descriptions and then synthesized to a 

reconfigurable fabric. Similar techniques have been previously used, for both offline 

and online scenarios. Kuzmanov et al. [114] extract kernels from an executable during a 

profiling phase. Those kernels are then processed and transformed offline into hardware 

descriptions and implemented using tools for FPGA-based hardware synthesis. The 

hardware implementations are then available during the execution of the program. 

Approaches such as Warp [13] propose an online hardware generation scheme which 

uses custom synthesis tools and custom reconfigurable fabrics. 

Based on the general architecture for a 2D CGRA supporting Megablocks, depicted 

in Figure 5.11, we propose the Specialized Array (SAr), a specialization of the 

architecture for a single Megablock. Figure 5.12 presents two instances of the SAr for 

two different hypothetical Megablocks. Since the architecture only executes one 

Megablock, the functionality is fixed and does not have configuration bits. In the 

examples in Figure 5.12, the FUs are replaced by implementations of the Megablock 

operations, and the configurable interconnection resources are replaced by direct 

connections. Note that, depending on the implementation, the direct connections can 
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either be simple wires, or have FIFOs for synchronization of results. The execution is 

similar to what was described for the 2D CGRA general architecture in Figure 5.11. The 

iterations are executed atomically, and when the output of each operation is registered, 

the execution cycles of the SAr and the overhead are given by equations (5.3) and (5.4). 

 
 

a)  b)  

Figure 5.12. Two possible SAr instances for two distinct Megablocks. 

5.5.3 Specialized Reconfigurable Array (SRA) 

In the previous approach, a specialized module is created for each Megablock. 

However, as Megablocks are specific to a single program, and for any given program 

just one Megablock is executing at a time, only one of the hardware modules will be 

active at any given time. The Specialized Reconfigurable Array (SRA) merges 

individual Megablock implementations into a single runtime reconfigurable array. At 

any given time, the SRA can only execute one Megablock, but it can be reconfigured at 

runtime to execute any of the Megablocks it implements. The objective is to reduce 

resource usage and reconfiguration time (when compared with the general 2D CGRA) 

while providing an RPU with runtime reconfigurability (a validation of this approach is 

presented in Appendix A). 
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Figure 5.13 presents an instance of the SRA implementing the Megablocks depicted 

in Figure 5.12. The connections can be configured, according to the active Megablock. 

An implementation of this architecture can use direct connections for communication, 

as the SAr architecture example (presented in Figure 5.12), allowing several input wires 

to be multiplexed in the input ports of shared FUs. An alternative implementation can 

forward communication between adjacent rows (see Figure 5.13), using FUs to bypass 

values across rows (bypass FUs). The FUs marked with a “+” are reused between the 

Megablock configurations considered in this case. The execution clock cycles of the 

SRA and the overhead can be estimated with equations (5.3) and (5.4). 

 

Figure 5.13. SRA instance for two hypothetical Megablocks. 

5.5.4 Folded CGRA (1D CGRA) 

For Megablocks with many operations (e.g., several hundreds), it can be impractical 

to implement all operations at the same time in hardware. The Folded CGRA (Figure 

5.14) is composed of a single row of reconfigurable FUs and multiplexes the execution 

of each row over time. If the Folded CGRA is capable of changing its configuration 
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every clock cycle, and one does not consider pipelining, its execution becomes 

equivalent to a general 2D CGRA (see Section 5.5.1) and can use the same equations 

for modeling. 

A Folded CGRA can be useful for a resource-constrained environment, when 

compared with the previous architectures, and it is an adequate option for implementing  

large Megablocks. 

 

Figure 5.14. General architecture for a Folded CGRA-based RPU which supports Megablocks. 

5.6 Megablock Pipelining 

When mapping loops to 2D CGRAs, one can significantly improve performance 

(throughput and latency) by pipelining the iterations of the loop [48, 103, 104]. The 

main idea is to overlap consecutive loop iterations while preserving data-dependences 

and resource constraints. There are several ways to pipeline loops. The compiler 

community, which traditionally addressed GPPs, uses software pipelining techniques 

[49], being modulo scheduling [103] one of the possible schemes. In the context of 

hardware synthesis (e.g., high-level synthesis) loop pipelining is also known as loop 

folding [115] and it has been addressed by several authors (see, [48, 104], just to name a 

few). To the best of our knowledge, most approaches use the iterative modulo 

scheduling algorithm proposed by Rau [103]. As with typical loops, Megablocks can 

also be accelerated by pipelining their iterations.  

In this section we present a technique to pipeline the iterations of Megablocks. The 

technique moves inter-iteration dependencies from the Megablock body to a separate 

module (i.e., the Input Module). The Megablock kernel becomes a data-flow graph 

which can be fully pipelined. The input module is not pipelined and is responsible for 
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feeding the Megablock kernel. We present a study of expected performance gains after 

applying this pipelining technique through estimation models, and suggest hardware 

extensions which enable Megablock pipelining in row-based 2D CGRAs (see Figure 

5.11), as well as specialized architectures, such as the SAr (see Section 5.5.2). 

5.6.1 Inter-Iteration Dependencies 

The data dependencies [29] in Megablocks can be grouped into two types: direct and 

indirect dependencies. Direct dependencies are data dependencies between operations 

which are explicitly represented in the Megablock. They are exposed in the Megablock 

graph representation by data connections. Feedback connections are data connections 

between values of different iterations, and represent direct inter-iteration dependencies. 

Indirect dependencies are not explicitly represented, and usually correspond to 

operations which manipulate data in a medium external to the processor (e.g., memory 

accesses). 

To pipeline Megablocks, we propose a technique that is capable of handling direct 

inter-iteration dependencies, by moving them to outside of the Megablock body, and 

that can be applied to Megablock without indirect inter-iteration dependencies. 

Consider the C code for the function vecsum in Figure 5.15, which sums the 

elements of an array. Figure 5.16 shows the repeating pattern of a Megablock found in 

the execution trace in a MicroBlaze processor [90] of a program which uses the function 

vecsum, and Figure 5.17 represents the same Megablock as a graph, according to the 

representation introduced in Chapter 4, Section 4.4. The addk MicroBlaze instruction 

with address 18C adds the contents of register 3 to the contents of register 4, and stores 

the results back to register 3. The next instruction, a sw instruction with address 190, is 

a store operation. It sums the contents of register 7 with the contents of register 9, and 

the result is the memory address where the content of register 3 will be stored. As the 

previous instruction alters the content of register 3, which is needed by this sw 

instruction, there is a direct dependency between these two instructions, on the content 

of register 3. This dependency is represented in the Megablock graph representation as a 

data connection between the node 5:add and 7:store. 

The first instruction, the lw instruction with address 180, reads the contents of 

register 9. As this register was lastly written by the addik instruction with address 19C 

in the previous iteration, there is a direct inter-iteration dependency between these two 
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instructions. This dependency is represented in the graph as a feedback connection 

between the node 10:add and the input node r9 (input). 

void vecsum(int* A, int* B, int* C, int n) 

{ 

  int i; 

  for(i = 0; i < n; i++) { 

    C[i] = A[i] + B[i]; 

  } 

} 

Figure 5.15. C code for a vecsum function. 

0x00000180 lw r3, r5, r9      → 0:add 

                              → 1:load 

0x00000184 lw r4, r6, r9      → 2:add 

                              → 3:load 

0x00000188 addik r10, r10, 1  → 4:add 

0x0000018C addk r3, r3, r4    → 5:add 

0x00000190 sw r3, r7, r9      → 6:add 

                              → 7:store 

0x00000194 rsubk r18, r10, r8 → 8:rsub_carry 

0x00000198 bneid r18, -24     → 9:equalZero 

0x0000019C addik r9, r9, 4    → 10:add 

Figure 5.16. Assembly instructions of the repeating pattern of a Megablock found in the trace of 

vecsum running on a MicroBlaze processor, and their correspondent translation to operations to be 

mapped to a CGRA. 

The lw instructions with address 180 and 184 read values from the memory 

addresses given by the sum of the content of register 9 and the content of register 5 and 

6, respectively. The sw instruction with address 190 writes the content of register 3 to 

the memory address given by the sum of the content of register 9 and the content of 

register 7. Depending on the values of register 5, 6 and 7, these instructions can be 

reading and writing to the same memory position in the same or in different iterations. 

If a Megablock contains instructions which write to memory, there might be indirect 

dependencies. Because registers can have any value, the dependency is not tied to the 

registers we use, but on the addresses accessed. Memory instructions will be dependent 
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if at any point in the Megablock, a write operation has the same target address of a 

previous or a subsequent read operation. 

 

Figure 5.17. Graph representation of the repeating pattern of the Megablock found when executing 

vecsum. 

We focus on the pipelining of Megablocks with specific characteristics. We will 

show later on (see Chapter 6, Section 6.4) that those characteristics/constraints will not 

prevent us to pipeline most of the Megablocks extracted from the set of benchmarks 

used in this work. Specifically, we consider Megablocks which an analysis can 

determine to have no indirect inter-iteration dependencies. This information implies 

memory disambiguation techniques, and can be provided either by a compiler, or 

extracted from the Megablock. 

A Megablock does not have indirect inter-iteration dependencies if we can guarantee 

that: 1) store operations are executed according to their original order; 2) the contents of 

the addresses accessed by load operations are not changed during the Megablock. 

Guarantee 1) implies a mechanism for serializing the memory writes, and can be 

enforced when mapping the operations to the hardware. This guarantee avoids output 

dependencies between memory writes. Guarantee 2) is dependent on the program and 
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compiler options. If guarantee 2) holds, the values accessed by load operations are 

immutable, avoiding true dependencies and anti-dependencies between memory 

operations. This guarantee can be achieved when programs use separate memory 

regions (e.g., occurring with non-overlapped arrays) for reading and writing values. 

This information can be given to the compiler in C by using the restrict  keyword of 

the C99 standard when declaring pointers [116], or can be determined in some cases by 

alias analysis techniques. 

As guarantee 1) can be enforced by the mapping phase, we only have to ensure that 

Megablocks respect guarantee 2). As an example, the source code in Figure 5.15, which 

originated the assembly instructions of Figure 5.16 and the Megablock graph 

representation of Figure 5.17, uses different arrays for reading and writing, thus 

respecting guarantee 2). We assume that this information is given by the compiler as 

additional information. It can also be discovered by analysis of the Megablock6. 

5.6.2 Architecture for Pipelined Megablocks  

Figure 5.18 shows two general RPU architectures for pipelining Megablocks. The 

architecture in Figure 5.18b) is a specialization of the architecture in Figure 5.18a), 

when considering Megablocks without memory accesses. Both architectures have an 

Input Module (IM) and a Loop Module (LM). The architecture with support for 

memory operations (see Figure 5.18b)) includes a Store Module (SM) and load units 

inside the LM. Both architectures execute iterations atomically, i.e. iterations are either 

fully executed or discarded. An iteration is discarded when it activates an exit point. 

When an exit point is activated, the Megablock execution ends. 

The LM is a pipelined dataflow implementation of the Megablock repeating pattern 

(can be thought as the kernel), where the Megablock is split into several stages (see 

Figure 5.19). Each stage executes a different iteration of the Megablock, and when the 

LM advances a step (which can take from one to several clock cycles, depending on the 

Megablock and its implementation), all stages execute simultaneously. 

                                                 

 
6 Note that this is not focused on this thesis. However, as an example: in this case, the value of 

register 9, which is used by the three memory operations, does not change between the loads and the store 
operations. If we know the values of r5, r6 and r7, we can calculate the minimum distance between the 
load and the store operations. If the minimum distance is D, this means that we can overlap up to D 
iterations, which will determine the maximum number of the pipeline stages we can have without 
incurring in indirect dependencies. 
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a) RPU with memory operations b) RPU without memory operations 

Figure 5.18. General blocks for Megablock pipelined execution. 

 

Figure 5.19. Execution of an LM with three stages. 

An iteration completes when it finishes execution in the last stage of the LM without 

activating exit points. All exit points are delayed so that when they are checked, the 

corresponding iteration is in the last stage. After filling the pipeline (step 3 in Figure 

5.19), the LM completes an iteration per step. To advance a step, the LM needs the 

values generated by the IM. The IM is responsible for generating the set of inputs for 

each iteration, and only depends on the values generated in the previous step of the IM. 

This approach includes a module for store operations (i.e., SM) to implement 

guarantee 1) for indirect dependencies (i.e. store operations have to be executed by their 

original order). Since the LM executes operations of different iterations simultaneously, 

the store operations are moved outside the LM, i.e., to the SM. This way, all store 

operations are delayed to just after the last stage. The SM only execute if no exits are 

activated for that iteration, avoiding speculative writes to memory. The SM depends on 

the results of the LM. 
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According to guarantee 2) for indirect dependencies, load operations are done from 

immutable locations. This means that load operations can be done in any order, and 

remain inside the LM. However, in this case the step of the LM only finishes after all 

load operations complete. 

Table 5.3 summarizes the execution dependencies between the modules of the 

pipelined RPU. Figure 5.20 shows two schedules for the execution of the pipelined RPU 

with memory accesses. Figure 5.20 a) presents the steady state of the simplest execution 

schedule for the modules, which is to execute the modules sequentially. However, 

according to the dependencies, the IM only depends on its previous values, and as soon 

as it finishes execution, it can start computing the values of the next iteration. If we 

overlap the execution of the IM with the remaining modules, we obtain the schedule 

presented in Figure 5.20b) to d).  

 

Module Depends On Results From 
IM (Input Module) IM of previous iteration 
LM (Loop Module) IM of current iteration 
SM (Store Module) LM of current iteration 

Table 5.3. Dependencies between the modules of a pipelined RPU. 

The IM execution is split in two parts executed concurrently, IM-A and IM-L. IM-A 

refers to the execution of arithmetic and logic operations (e.g., addition, subtraction). 

IM-L corresponds to the execution of load operations. In this model store operations are 

not allowed in the IM. The IM is split in these two components as in real-life systems 

the number of concurrent memory accesses is usually very limited, and when the IM 

execution overlaps with the execution of the remaining modules, they will compete for 

the same limited resources. We consider that the execution of the IM associated to the 

load operations (IM-L) does not overlap with the remaining modules (LM and SM), 

which can also have memory operations. The LM can have a similar decomposition, 

LM-A and LM-L, where the arithmetic and logic components execute concurrently with 

both the IM-A component and the memory related components, in a third overlapping 

level. As the LM is pipelined, the arithmetic-logic part usually executes within one 

clock cycle, and the load operations represent the longest execution part of the LM. For 

simplicity’s sake, this decomposition was not considered. 
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a) Sequential – Steady State b) Overlapping - Prologue 

  

c) Overlapping – Steady State d) Overlapping – Exit Iteration 

Figure 5.20. Possible schedules for the modules of a pipelined RPU. 

The sequential schedule also has a prologue stage and an exit iteration, identical to 

the ones for the overlapping schedule, but without the overlapping of the arithmetic and 

logic operations. The RPU without memory accesses uses similar schedules, which do 

not include the SM. 

Software pipelining algorithms usually consider a prologue, a steady state, and an 

epilogue. The purpose of the epilogue is to orderly terminate the execution of iterations 

which cannot execute in the steady state because there are no more new iterations to 

feed the pipeline. Our approach does not have an epilogue. Since we commit iterations 

atomically, we can simply ignore the iterations which have already started but have not 

yet terminated by the time an exit is activated. 

Figure 5.21 shows the execution of the RPU modules when using an overlapping 

schedule, and considering that the LM has three stages and executes for two iterations. 

In the first step, the IM is the only module executing. In the second step, the results 

from the first step of the IM are ready and both the first step of the LM and the next step 

of the IM can start concurrently. The SM does not execute yet because it uses data from 

the last stage of the LM. At this point, the first iteration is in the first stage. As we are 

considering an LM with 3 stages, there is no data available in the third stage yet. When 

the first iteration executes in the last stage of the LM, the pipeline becomes full, and 

after execution, the SM can perform the stores of the first iteration and complete it. 

Each following step of the RPU completes an iteration. In the last step, the Megablock 

exits. As the stores of that iteration are neither performed nor the inputs of the next 
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iteration are needed, the execution stops after computing the results of the exit signals of 

the LM. 

 

Figure 5.21. Execution using an overlapping schedule with an LM with 3 stages. 

Equations (5.5) to (5.9) define the term RPUCy of equation (5.2) for the sequential 

and overlapping schedules, respectively, of the pipelined RPU with support for memory 

accesses. The term LMStg represents the number of stages in the LM, while NIt 

represents the number of completed iterations in the Megablock. 

The sequential schedule equations (5.5) and (5.6) consider an RPU with and without 

memory accesses, respectively. The terms IM-AvgCy, LM-AvgCy and SM-AvgCy 

represent the average clock cycles needed to execute a single step of the IM, LM, and 

SM, respectively. LM-LastCy represents the clock cycles needed to execute the last step 

of the LM in the exit iteration. 

In the overlapping schedule equations (from (5.7) to (5.9)), the terms IM-A(i)Cy, IM-

L(i)Cy , LM(i)Cy and SM(i)Cy. represent the clock cycles needed to complete the step i of 

the corresponding module. Equations (5.8) and (5.9) consider that each module always 

executes in a fixed number of clock cycles represented by the terms IM-ACy, IM-LCy, 

LMCy and SMCy. 

Usually, the latency of the LM is determined by the latency of the load operations. 

As the LM is pipelined, an LM without load operations will have the shortest step 

between all modules (usually one clock cycle). In this case, the IM latency becomes the 

dominant term. Considering the overlapping schedule without memory accesses, this 

means that the Max operation in equation (5.9) can be in most cases simplified to IMCy. 

Equations (5.10) and (5.11) estimate the number of clock cycles needed by the RPU, 

for sequential and overlapping schedules, when Megablocks have a large number of 

iterations, well above the number of stages of the LM. These equations are useful for 

comparing the performance of both schedules, and for calculating maximum theoretical 

speedup limits when comparing with non-pipelined Megablock implementations. 
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5.6.3 Megablock Pipelining Algorithm 

Consider the Megablock graph representation in Figure 5.17. As referred before in 

Chapter 4, Section 4.4, feedback connections in the graph representation can only point 

to nodes of the type Livein, and indicate the value that the input will have in the next 

iteration. They represent the inter-iteration direct dependencies. 

Using the feedback connections we can extract the expressions which control the 

value of the inputs in the subsequent iterations. Starting at a Livein node with a 

feedback connection, traversing the graph in the opposite direction of the connection 

will reach the node that generates the input value for the next iteration. The algorithm 

buildExpressionGraph in Figure 5.22b) creates, given a node, a directed graph which 

represents the expression that calculates the values of that node. For instance, following 

the feedback connection in node r9 (input), the values of the Livein are given by the 

output of the node 10:add. Applying the algorithm buildExpressionGraph to this node 

will initially build a new graph. As it is the first time the algorithm sees the node 

10:add, this node is added to the graph. This node is an operation, so the algorithm is 

called recursively over each of the parent nodes of the node 10:add. All the inputs of 

this node are either of type Livein or Constant, so after they are added to the graph, the 

algorithm stops. The algorithm returns a graph which represents the update expression 

for r10 (input), which in this case is r9 = r9 + 4. The algorithm process to the next 

Livein node with a feedback connection (i.e., r10) and repeats the process. As this is the 

last Livein node with a feedback connection, there are no more expressions to extract. 

In our pipelining technique, the algorithm buildInputModuleGraph (see Figure 

5.22a)) is applied over the original Megablock graph to extract the inputModuleGraph, 

which represents the IM (see Figure 5.23). This graph is built by generating a graph for 

each input node which has a feedback connection, and merging the resulting graphs in a 

single graph. This graph represents the hardware structure responsible for generating the 

inputs for each Megablock iteration. 

As the feedback connections from the original Megablock graph (see Figure 5.17) 

are being handled by the IM, when implementing the LM those connections can be 

ignored. Additionally, as our technique moves the store operations to outside of the LM, 

those operations are also removed from the graph. The scheduling of the resulting graph 

represents the LM. In Figure 5.24 we present a schedule of an LM graph using an “As-
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Soon-As-Possible” (ASAP) based scheduler [117]. It results in a 3-stage pipeline. The 

SM is composed by the single store operation of the Megablock. 

When implementing the pipelined Megablock, the outputs of the IM are connected 

to the inputs of the LM, and the values needed by the store operations are passed from 

the LM to the SM. Input nodes which do not have an incoming feedback connection do 

not change their value during loop execution and do not need to be updated. 

 

RpuMemCy = �IM-AvgCy + LM-AvgCy�× �LM��� + N�� − 1�+ SM-AvgCy

× NIt + LM-LastCy 
(5.5) 

RpuNoMemCy = �IM-AvgCy + LM-Avg��� × �LM��� + N�� − 1�
+ LM-LastCy 

(5.6) 

RpuMemVarCy = ����IM-A�i���, IM-L�i����

+ � ����IM-A�i���, IM-L�i��� + LM�i − 1����
�����

	
�

+���� 	IM-A�i + LM������, IM-L�i + LM������
���

	



+ LM�i + LM��� − 1�
��

+ SM�i���
+ LM�N�� + LM������ 

(5.7) 

RpuMemFixedCy

= ����IM-A��, IM-L���+����IM-A��, IM-L�� + LM���
× �LM��� − 1�+����IM-A��, IM-L�� + LM�� + SM���
× N�� + LM�� 

(5.8) 

RpuNoMem-FixedCy

= IM-ACy +����IM-A��, LM���× �LM��� + N�� − 1�
+ LM�� 

(5.9) 

RpuSequentialCy = �IM-AvgCy + LM-AvgCy + SM-AvgCy� × N�� (5.10) 

RpuOverlappingCy = ����IM-A��, IM-L�� + LM�� + SM���× N�� (5.11) 

Let us consider the IM in Figure 5.23. In this case we have an IM without loads (IM-

LCy is 0) which can be executed in one clock cycle (IM-ACy is 1). The LM (see Figure 

5.24) has three stages (LMStg is 3), and if we only consider the arithmetic and logic 
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operations, the maximum number of clock cycles a stage needs is one. If we admit two 

simultaneous loads per clock cycle, and with loads with one clock cycle latency, the 

maximum number of clock cycles a stage needs, taking into account memory accesses, 

is one (LMCy is one). If we admit one clock cycle for the store latency, the store module 

needs one cycle per step (SMCy is one). 

 

buildInputModuleGraph(megablock) 

   megablockDfg = createDfg(megablock) 

   for each input of megablockDfg 

      if input has feedback connection 

         sourceNode = feedback parent 

         inputDfg = buildExpressionGraph(sourceNode ) 

         add inputDfg to inputDfgList  

   end for 

   inputModuleGraph = mergeDfgs(inputDfgList) 

a) Algorithm buildInputModuleGraph 

buildExpressionGraph(sourceNode) 

   if(sourceNode already added) 

      return 

   else 

      add sourceNode 

     

   if(sourceNode type is constant) 

      return 

   if(sourceNode type is livein) 

      return 

    

   for each parent of sourceNode 

      buildExpressionGraph(parent) 

   end for 
b) Algorithm buildExpressionGraph 

Figure 5.22. Algorithms for IM graph creation. 

Let us consider a sequential scheduling. As we have memory accesses, equation 

(5.5) is used. In this case, the step in all modules has a fixed number of clock cycles, so 

the average number of clock cycles is the same as the number of clock cycles to execute 

a module. If the loop executes for 100 iterations, the number of clock cycles of the RPU 

execution is (1 + 1) × (3 + 100 - 1) + 1 × 100 + 1 = 305 clock cycles. 
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If we use an overlapping scheduling instead, and as the modules have a fixed 

number of clock cycles, equation (5.8) is used. If the loop executes for 100 iterations, 

the number of clock cycles of the RPU execution is max(1, 0) + max(1, 0 + 1) × (3 - 1) 

+ max(1, 0 + 1 + 1) × 100 + 1 = 204 clock cycles. This results in a speedup of 1.49× 

when comparing the latency of the overlapped schedule over the sequential schedule, in 

this case. 

 

Figure 5.23. Input Module (IM) graph for a Megablock found in vecsum. 

 

 

Figure 5.24. Loop Module (LM) schedule for a Megablock found in vecsum. 

5.6.4 Hardware Support for Megablock Pipelining 

Consider the general architecture, for a 2D CGRA with Megablock support, 

depicted in Figure 5.11. To enable our Megablock pipelining approach in such CGRAs, 

we propose three hardware extensions presented in Figure 5.25: (a) feedback lines to the 

top row, for the IM; (b) clock-enable control signals for each module; and (c) delays for 

the exit signals. The extensions enable the implementation of the IM, the LM, and the 

SM at the hardware level. The same extensions can be applied to specialized 
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architectures, such as the SAr (see Section 5.5.2) and the SRA (see Section 5.5.3). For 

simplicity, the CGRA in Figure 5.25 only has three rows. 

 

Figure 5.25. General architecture for a 2D CGRA-based RPU which supports Megablocks and 

Megablock pipelining. 

The feedback lines (a) are needed for the IM re-alimentation. This kind of 

interconnection can be expensive, but as only Input Modules with a low number of 

stages are attractive for implementation, these lines can be present in only a restricted 

number of top rows. As the modules have producer-consumer relationships between 

them, we use a Step Controller (b) to indicate when there are values available for each 

module, and when they can execute. The exit delays (c) synchronize the exit signals so 

that when they activate, they always correspond to the iteration in the last stage. They 

can be implemented with simple 1-bit FIFOs. 
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5.7 Summary 

This chapter focused on the practical aspects of using Megablocks. We explained 

how to transform assembly instructions into the Megablock graph representation. We 

proposed and compared two techniques for identifying previously detected Megablocks 

in a trace: Single Address Identification (SAI) and Megablock Signature Identification 

(MSI). We described RPU architectures able to implement Megablocks 

Finally, we explored the possibility of pipelining Megablocks in hardware, by 

suggesting techniques to handle the inter-iteration dependencies, as well as architecture 

augmentations to support Megablock pipelining. This technique is appropriate for loops 

where the operations related to the update of values used across iterations represent a 

small part of the loop and can be executed with lower latency than the complete loop. 
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6  Experimental Results 

This chapter presents extensive results about the techniques introduced in the previous 

chapters, such as characterization of Megablock coverage, and experiments considering 

several scenarios regarding Megablock mapping (i.e., baseline results, if-conversion, graph 

transformations) and pipelining of Megablocks. 

6.1 Experimental Setup 

We consider the general architecture described in Section 5.5, with an Reconfigurable 

Processing Unit (RPU) coupled to the General Purpose Processor (GPP) as depicted in Figure 

5.10b). We use a MicroBlaze soft-core [90] as the target GPP, optimized for speed. The GPP 

communicates directly with the RPU through FSL connections [118]. We use a Xilinx 

Spartan-6 LX45 FPGA as the target FPGA platform for the implementation of hardware 

designs. 

To evaluate our approach, we use a set of 66 benchmarks using integer data types from 

embedded computing (the benchmarks are available online [119]). We use mb-gcc 4.1.2 

[120], the GCC compiler targeting MicroBlaze. By default, the optimization level flag is set 

to –O27. The 66 benchmarks were separated in two sets, named ifs and no-ifs, according to the 

existence or non-existence of control-flow related constructions (e.g., if statements in C code) 

in the kernels, respectively. The ifs set contains 29 benchmarks and the no-ifs set contains 37 

benchmarks. Table 6.1 and Table 6.2 present a characterization of the benchmarks that form 

the no-ifs and ifs sets, respectively. Column “Kernel LOC” indicates the number of lines of 

code that compromise the benchmark kernel, excluding comment and empty lines. The 

kernels contain a wide range of code sizes, from simple to complex examples. The lines of 

code vary between 6 and 241 in the no-ifs set, and from 9 to 226 in the ifs set.  

                                                 

 
7 It has been observed that unoptimized code is much easier to schedule than optimized code [15]. Although 

it is not guaranteed that all the binaries running on the system have been compiled with optimizations, we opted 
to use compiler-optimized programs when evaluating scheduling algorithms by default. 
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Benchmark Kernel LOC #loops 
Max. Loop 

nesting level 

#Input/output 

arrays 
Autcor 15 2 1 1/1 

Bilinear 190 1 0 2/1 

bob_hash 16 1 0 1/0 

Checkbits 31 1 0 1/1 

Checksum 103 1 0 1/1 

compress1 15 1 0 0/0 

compress2 20 1 0 0/0 

corr_gen 17 2 1 2/1 

Count 8 1 0 0/0 

Dotprod 6 1 0 2/1 

even_ones 9 1 0 0/0 

Expand 14 1 0 0/0 

fdct_8x8 241 4 2 1/1 

fft 39 3 2 2/1 

fibonacci 26 1 0 0/0 

fir 16 2 1 2/1 

gcd2 16 1 0 0/0 

gouraud 12 1 0 0/1 

hamming_dist 11 1 0 0/0 

lookup2 55 1 0 1/0 

maxstr1 6 1 0 0/0 

maxstr2 25 1 0 0/0 

md5 173 1 0 1/1 

mulinv 18 1 0 0/0 

perlins 96 1 0 1/1 

pix_expand 12 1 0 1/1 

popcmpr 20 1 0 0/0 

popcnt 12 2 1 1/1 

quantize 42 2 1 2/1 

reverse 10 1 0 0/0 

smooth 23 4 3 1/1 

vecsum 10 1 0 2/1 

wave_horz 31 4 2 3/1 

wave_vert 40 4 2 3/2 

ycbcr422p_rgb 148 1 0 3/1 

yc_demux_be16 22 1 0 1/3 

yc_demux_le16 22 1 0 1/3 

Table 6.1. Characteristics of the benchmarks which form the set no-ifs. 
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Benchmark 
Kernel 
LOC 

#Ifs 
inside 
loop 

Ifs Max 
Nesting 

#Invoked 
Functions #loops 

Max. Loop 
nesting level 

#Input/output 
arrays 

adpcm_coder 67 9 1 0 1 0 1/1 

adpcm_decoder 52 6 2 0 1 0 1/1 

boundary 18 1 0 0 2 1 1/2 

bubble_sort 14 1 0 0 2 1 1/0 

change_brightness 24 1 1 0 1 0 1/1 

compositing 12 2 0 0 1 0 2/1 

conv_3x3 81 2 0 0 2 1 2/1 

crc32 15 1 1 0 1 0 0/0 

divlu 16 1 0 0 1 0 0/0 

gcd1 15 1 1 0 1 0 0/0 

idct_8x8_12q4 226 16 1 0 4 1 1/1 

isqrt1 21 4 0 0 1 0 0/0 

isqrt2 16 1 0 0 1 0 0/0 

isqrt3 17 1 0 0 1 0 0/0 

isqrt4 18 1 1 0 1 0 0/0 

mad_16x16 36 1 0 1 4 3 2/1 

mad_8x8 35 1 0 1 4 3 2/1 

max 9 1 0 0 1 0 1/0 

median_3x3 82 13 0 0 1 0 1/1 

modexp 11 1 0 0 1 0 0/0 

motion_estimation 22 0 0 1 4 3 2/1 

perimeter 35 1 1 0 1 0 1/1 

pix_sat 24 1 2 0 1 0 1/0 

rgb_to_hsv_int 57 9 2 0 1 0 3/1 

rng 177 7 1 0 1 0 1/1 

sad_16x16 17 0 0 1 2 1 1/1 

sad_8x8 17 0 0 1 2 1 1/1 

sobel 51 1 0 2 1 0 1/1 

viterbi_gsm 37 1 1 0 4 2 3/2 

Table 6.2. Characteristics of the benchmarks which form the set ifs. 

Columns #loops and Max. loop nesting level indicate the number of loop constructions in 

the code (e.g., for and while statements), and the maximum nesting level of the loops. All 

examples contain at least one loop construct, and most benchmarks do not have nested loops 

(27% and 34% of the benchmarks in the no-ifs and ifs sets have nested loops, respectively). 

Column #Input/output arrays indicate the number of arrays which are used as input/ output of 

the kernel. In most cases, the benchmarks either use one array for input values and another for 

output values, or do not use arrays at all. 
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Table 6.2 includes three additional columns. The column #Ifs inside loop indicates the 

number of control-flow constructions (e.g., if statements) found in the source code (only ifs 

inside loops are accounted for), while the column Ifs max nesting indicates the maximum size 

of an if statement chain. The column Invoked Functions indicates the number of times the 

benchmarks call an external function. This behavior was found only in a reduced number of 

benchmarks of the ifs set, being abs the only function called in those benchmarks. 

All benchmarks use initialized input data. The input arrays are declared as global variables 

with static initializers to minimize the impact of the initialization when running the 

benchmark. The arrays are initialized with random values, with well-defined seeds to ensure 

the repeatability of the experiments. The total execution clock cycles of the benchmarks, 

when executing in the MicroBlaze considered for experiments, vary between 10,000 and 

1,000,000 clock cycles. 

For the speedup estimations concerning the Megablocks, we used the instruction latencies 

of a MicroBlaze processor optimized for speed (as defined in the MicroBlaze Reference 

manual [90]), for the equivalent operations of the intermediate representation. We consider 

that the program data fits in the FPGA Block RAMs (BRAMs), thus enabling loads and stores 

to memory to be done in one clock cycle [121], and we consider, as default, that up to 2 

simultaneous memory accesses can be done in one clock cycle (this setup fits well with 

embedded devices, e.g., the dual-port BRAMs found in FPGAs [122], and memory 

architectures of DSPs [123]). 

We used the tool Megablock Extractor (see Figure C.1a) and Figure C.1b) in Appendix C) 

to extract the Megablocks from the executable binaries, and the tool Megablock Estimation 

(see Figure C.2a) and Figure C.2b) in Appendix C) to simulate an architecture which supports 

the extracted Megablocks. 

For the hardware implementations of the Megablocks, we used the tool VHDL for 

Megablocks (see Figure C.3 in Appendix C) to generate the hardware modules, and Xilinx 

ISE 12.2 to obtain synthesis and placement and routing results.  

6.2 Megablock Coverage 

The coverage of a detection method over the execution of a program is an important 

measure, as it indicates an upper bound of the impact an RPU can have (Section 4.1). To 

measure the coverage of the Megablock, we considered three adjustable parameters of 
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Megablock detection: maximum pattern size, type of pattern unit (the considered units are 

instruction, basic block and fragment) and unrolling of inner loops. To maximize the number 

of detected Megablocks, the parameter executed instructions threshold is set to 1 (see Section 

4.3). The proposed identification methods (see Section 5.4), Single Address Identification 

(SAI) and Megablock Signature Identification (MSI) ,  can have an impact in the coverage 

and we also take it into consideration. We also indicate the detection ratio, i.e., in how many 

benchmarks we can detect at least one Megablock (coverage greater than 0%). 

Figure 6.1 shows the average coverage obtained when using the Megablock detection 

considering several values for the parameters described above. The coverage results represent 

an average over the coverage of all benchmarks, including benchmarks without detected 

Megablocks (coverage equal to 0%). For instance, when using the SAI method and no 

unrolling of innermost loops, basic block as the detection unit, and 8 as the maximum pattern 

size, the average coverage achieved by the Megablock detection in the complete set of 66 

benchmarks is 70%. 

 

a) b) 

 

c) d) 

Figure 6.1. Average coverage of the complete set of benchmarks when applying Megablock detection and 

varying several parameters. 

Figure 6.2 shows the ratio of benchmarks where Megablocks were detected (coverage 
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detected Megablocks to close to 100% (see Figure 6.2), and diminishes the differences when 

using basic blocks and superblocks as units when maximum pattern size is 24 or greater. 

However, unrolling has a modest impact in the average coverage (see Figure 6.1). The ratio of 

benchmarks with detected Megablocks was already high  before unrolling (around 90%), and 

the coverage values of the new benchmarks are close to the average. Unrolling increases the 

average coverage by 3% in the best case. 

 

a) b) 

 

c) d) 

Figure 6.2. Megablock detection ratio in the complete set of benchmarks. Indicates the ratio of 

benchmarks were valid Megablocks could be detected. 

When compared with the SAI method, the MSI method lowered the coverage in all cases. 

The main reason comes from the additional overhead in the MSI method when compared with 

the SAI method (it has at least an overhead of two iterations per call, which are needed to 

detect the Megablock). 

In the other hand, in cases where there are many conflicts due to Megablocks having the 

same start address, MSI can execute both, potentially increasing the coverage. However, for 

the tested benchmarks, on average the additional overhead outweighed this benefit. 

With the SAI method, the average coverage when using basic block and fragment units 

converged rapidly, at a value of maximum pattern size of 4. However, to obtain Megablock 
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detection rates close to 100% with basic block units, the maximum pattern size needs to be 

increased to 24 and unrolling must be enabled. 

When using unrolling, in some cases the average coverage lowers with an increase in the 

maximum pattern size. This happens because when using unrolling, outer loops with unrolled 

inner loops are given a higher priority than isolated inner loops. If the path of the outer loop is 

not regular, the Megablock terminates sooner and completes a lower number of total inner 

loop iterations than if the inner loop had been implemented instead of the outer loop. 

Summarizing, unrolling can be counterproductive in benchmarks which do not form regular 

execution patterns, and aggravates when the number of iterations of the outer loop is low 

(e.g., less than 10). 

According to the obtained values, we decided to use a default setup for Megablock 

detection, with a maximum pattern size of 248, and basic block as detection unit. Unrolling of 

inner loops is considered as an optional parameter. 

We have chosen the basic block as the default detection unit as it is simpler to implement 

than fragments, and a maximum pattern of size of 24 provides similar Megablock detection 

coverage when using units either based on basic blocks or fragments. 

Figure 6.3 shows individual coverage values for each benchmark, when considering the 

default Megablock detection setup and an implementation of the Backward Branch Loop 

Detection (BBLD) used in the Warp Processor [124, 125]. For the Megablock detection we 

disabled unrolling of inner loops to provide a fair comparison, as BBLD only supports inner 

loop detection. The results in Figure 6.3 show, on average, higher coverage when using the 

BBLD. This was expected, as the current Megablock detection trades-off the coverage 

obtained when statically considering all paths of a loop, with having a loop which represents 

an execution path. The advantage of having an execution path loop is that it forms a dataflow 

representation suited for non-sequential computation models. Furthermore, we can apply 

transformations which cannot be used, or that are more complex, when considering loops with 

branching code. 

With respect to coverage, the results are highly dependent on the benchmark. In some 

examples the difference between coverage values is high (e.g., for isqrt, maxstr, pix_sat, 

viterbi_gsm), and in some cases Megablocks are not identified (e.g., adpcm_coder, 

                                                 

 
8 A runtime adaptation of the maximum patter size according to the characteristics of the application running 

on the system is not considered in this work. 
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adpcm_decoder, conv_3x3, smooth). This happens with kernels of the benchmarks containing 

branches, and not forming repeating patterns during execution. 

 

 

 

Figure 6.3. Individual coverage values in the main set of benchmarks, for Megablock detection using the 

default setup and Backward Branch Loop Detection.  
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Other examples allow high Megablock coverage values, above 80%, even when the 

kernels have branches (e.g., change_brightness, gcd2, max, lookup2). In these cases, there 

were one or more frequent paths representing most of the execution of the kernel. Megablock 

coverage close to 100% usually represents benchmarks which do not have branches inside the 

kernel (e.g., autcor, bob_hash, compositing, dotprod, gouraud, vecsum). There are also 

examples where the Megablock detection has high coverage values, but the BBLD has very 

low or 0% coverage (e.g., bilinear, checkbits, checksum, md5, perlins). This corresponds to 

kernels with loops above a certain size (i.e., several hundreds of instructions).  

The objective of using Megablocks is to have a runtime structure better suited for 

implementation in an RPU than the static representation of the loop. However, the Megablock 

is only useful if a substantial portion of the program execution is spent inside Megablocks. In 

this section we explored the Megablock coverage over a number of detection configurations 

and arrived at a default setup. The average coverage achieved by Megablock detection in the 

main set of benchmarks when using the default setup is 70%, while about half of the 

benchmarks achieved coverage over 90%, which corresponds to an average overall speedup 

upper bound of 3.3× and 10× respectively. We consider that these results justify the use of 

Megablocks in a dynamic partitioning approach. 

6.3 Megablock Mapping 

We have developed tools which enabled us to study the impact of using Megablocks in a 

dynamic partitioning system. This section presents extensive estimation results over several 

configurations. We also have tested this approach by implementing a proof-of-concept system 

[126], whose presentation and results are available in Appendix A.  

We considered the default Megablock detection setup (basic block as the type of pattern 

unit, maximum pattern size of 24), using the SAI method. When using SAI, there can be 

conflicts if two Megablocks share the same start address. If there are address conflicts 

between two or more Megablocks, the Megablock with higher coverage is chosen, according 

to an approximate coverage estimation performed during the detection phase. The mapping of 

memory operations respects the original order of the operations.  

As target architecture we use the SAr architecture considering FUs with registered outputs 

(see Section 5.5.2). The reason for choosing this architecture is twofold. On a practical point 

of view, among the presented architectures, this was the easiest to test and implement. On the 
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other hand, it is still possible to obtain results meaningful for the other architectures. When 

the results of each FU are stored in registers in the SAr architecture, the latency of Megablock 

execution (i.e., clock cycles) is equivalent to the latency of the other architectures presented in 

Section 5.5, including the General 2D CGRA (see Section 5.5.1), the SRA (see Section 5.5.3) 

and the Folded CGRA (see Section 5.5.4). 

We considered three parameters which define the target SAr architecture: maximum 

number of concurrent memory operations, maximum number of concurrent arithmetic-logic 

operations, and the ratio between the clock frequency of the RPU and the processor. 

For each set of benchmarks, we considered the cases were unrolling of inner loops is 

disabled (innerloops) or enabled (unrolled). We consider innerloops as the default parameter, 

and present results with unrolling enabled for the cases where there is any change. The values 

are obtained with the tool Megablock Estimation (see Figure C.2a) and Figure C.2b) in 

Appendix C), which has support for an estimator based on a SAr architecture (see Section 

5.5.2) with registered results. In the speedup calculations we consider all communication 

overheads. 

 

6.3.1 Baseline Results 

Table 6.3 and Table 6.4 present the characteristics of the detected Megablocks with 

innerloops, for the no-ifs and ifs sets, respectively. Table 6.5 and Table 6.6 present the same 

characteristics found in the unrolled case. For the baseline results, all graph transformations 

proposed in Section 5.1 are disabled. 

The Critical Path Length (CPL) and Instruction Level Parallelism (ILP) results were 

calculated assuming there are no restrictions in the target architecture (e.g., unlimited 

arithmetic, logic and memory operations per clock cycle) and that memory operations are 

independent. These results indicate an upper bound of the values that can be obtained when 

implementing the Megablocks in practical architectures. We used a weighted average which 

has into account the number of times each Megablock was executed. 
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Benchmark 
Megablocks 
Det./Exec. 

Avg. It. per 
call  

Avg. Op. 
per It. 

 Avg. ILP 
(Min/Max) 

 Avg. CPL 
(Min/Max) 

autcor 1/1 159.0 13.0 2.6 5.0 

bilinear 1/1 99.0 161.0 7.0 23.0 

bob_hash 1/1 3999.0 11.0 1.4 8.0 

checkbits 1/1 166.0 69.0 4.3 16.0 

checksum 2/2 65.5 81.5 2.5 (2.0/3.0) 27.5 (3/52) 

compress1 1/1 29.0 8.0 2.0 4.0 

compress2 1/1 4.0 24.0 1.7 14.0 

corr_gen 1/1 7.0 14.0 2.3 6.0 

count 1/1 31.0 6.0 2.0 3.0 

dotprod 1/1 2047.0 9.0 2.3 4.0 

even_ones 1/1 31.0 6.0 2.0 3.0 

expand 1/1 29.0 8.0 2.0 4.0 

fdct_8x8 2/2 7.0 117.5 7.6 (7.4/7.8) 15.5 (15/16) 

fft 3/2 11.0 34.3 4.9 (4.9/5.4) 7.0 (7/10) 

fibonacci 1/1 2378.0 6.0 2.0 3.0 

fir 1/1 3.0 11.0 2.2 5.0 

gcd2 1/1 65.6 8.0 1.3 6.0 

gouraud 1/1 1999.0 15.0 2.5 6.0 

hamming_dist 1/1 31.0 6.0 2.0 3.0 

lookup2 1/1 499.0 49.0 2.2 22.0 

maxstr1 2/2 1.9 7.3 1.9 (1.3/4.8) 3.3 (3/5) 

maxstr2 7/2 2.5 5.5 1.3 (1.3/6.0) 4.1 (4/11) 

md5 1/1 99.0 837.0 1.9 451.0 

mulinv 1/1 17.1 12.0 0.3 36.0 

perlins 1/1 1023.0 124.0 4.3 29.0 

pix_expand 1/1 4999.0 8.0 2.7 3.0 

popcmpr 1/1 8.4 6.0 1.5 4.0 

popcnt 1/1 31.0 8.0 2.7 3.0 

quantize 1/1 199.0 13.0 1.9 7.0 

reverse 1/1 31.0 7.0 2.3 3.0 

smooth 0/0 N.A. N.A. N/A N/A 

vecsum 1/1 2047.0 11.0 2.8 4.0 

wave_horz 2/2 7.0 16.5 0.4 40.5 (40/41) 

wave_vert 2/2 7.0 12.5 2.5 (2.4/2.6) 5.0 

ycbcr422p_rgb 3/1 9.8 90.0 6.4 14.0 

yc_demux_be16 1/1 999.0 22.0 7.3 3.0 

yc_demux_le16 1/1 999.0 22.0 7.3 3.0 

Table 6.3. Megablock characteristics for the no-ifs set, only inner loops. 
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Benchmark 
Megablocks 
Det./Exec. 

Avg. It. 
per call  

Avg. Op. 
per It. 

 Avg. ILP 
(Min/Max) 

 Avg. CPL 
(Min/Max) 

adpcm_coder 0/0 N.A. N.A. N/A N/A 

adpcm_decoder 0/0 N.A. N.A. N/A N/A 

boundary 1/1 73.6 12.0 5.0 3.0 

bubble_sort 2/1 6.8 9.0 2.5 4.0 

change_brightness 3/2 10.2 11.0 2.6 (1.7/2.6) 5.1 (5/7) 

compositing 1/1 199.0 18.0 2.0 11.0 

conv_3x3 0/0 N.A. N.A. N/A N/A 

crc32 0/0 N.A. N.A. N/A N/A 

divlu 2/1 2.9 13.0 2.6 5.0 

gcd1 2/2 16.4 5.0 2.2 (1.7/2.5) 2.4 (2/3) 

idct_8x8_12q4 1/1 7.0 111.0 7.5 15.0 

isqrt1 3/1 1.1 39.0 0.8 77.0 

isqrt2 2/1 1.8 10.0 3.3 3.0 

isqrt3 2/1 1.9 13.0 2.6 5.0 

isqrt4 2/1 1.8 21.0 3.8 6.0 

mad_16x16 1/1 15.0 13.0 1.8 8.0 

mad_8x8 1/1 7.0 13.0 1.8 8.0 

max 1/1 185.2 8.0 1.6 5.0 

median_3x3 0/0 N.A. N.A. N/A N/A 

modexp 1/1 2.0 12.0 0.2 70.0 

motion_estimation 1/1 15.0 13.0 2.0 8.0 

perimeter 1/1 78.7 19.0 5.3 4.0 

pix_sat 2/2 2.0 12.0 1.9 7.0 

rgb_to_hsv_int 5/1 1.2 57.0 1.7 38.0 

rng 18/3 1.1 53.3 4.9 (4.8/4.9) 13.0 

sad_16x16 1/1 15.0 14.0 1.8 8.0 

sad_8x8 1/1 7.0 14.0 1.8 8.0 

sobel 2/1 3.7 44.0 3.8 13.0 

viterbi_gsm 1/1 1.6 49.0 8.1 7.0 

Table 6.4. Megablock characteristics for the ifs set, only inner loops. 
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Benchmark 
Megablocks 
Det./Exec. 

Avg. It. 
per call  

Avg. Op. 
per It. 

 Avg. ILP 
(Min/Max) 

 Avg. CPL 
(Min/Max) 

compress2 2/1 999.0 141.0 2.1 66.0 

corr_gen 2/1 141.0 121.0 5.8 21.0 

fdct_8x8 4/2 49.0 946.0 40.3 (39.6/41.0) 23.5 (23/24) 

fft 6/2 11.0 34.3 4.9 (4.9/5.4) 7.0 (7/10) 

fir 2/1 252.0 55.0 5.0 11.0 

gcd2 2/2 46.6 10.1 1.3 (1.3/1.7) 7.2 (6/103) 

maxstr1 9/2 1.6 22.3 2.8 (1.3/3.6) 6.9 (3/9) 

maxstr2 27/2 2.5 6.3 1.3 (1.3/5.1) 4.2 (4/14) 

mulinv 10/2 2.2 77.8 0.3 (0.3/0.4) 211.1 (36/632) 

popcmpr 9/2 1.5 41.2 2.5 (1.5/3.5) 13.1 (4/22) 

smooth 2/1 29.0 155.0 7.4 21.0 

wave_horz 4/2 49.0 142.5 2.8 50.5 (50/51) 

wave_vert 4/2 39.0 110.5 6.9 (6.6/7.2) 16.0 

ycbcr422p_rgb 4/1 9.7 90.0 6.4 14.0 

Table 6.5. Megablock characteristics for the no-ifs set when applying unrolling. 

Benchmark 
Megablocks 
Det./Exec. 

Avg. It. 
per call  

Avg. Op. 
per It. 

 Avg. ILP 
(Min/Max) 

 Avg. CPL 
(Min/Max) 

adpcm_coder 4/1 1.0 80.0 6.4 16.0 

adpcm_decoder 9/1 1.2 64.0 6.7 12.0 

conv_3x3 4/2 2.0 88.1 8.8 (7.0/19.8) 13.1 (13/14) 

crc32 6/2 1.6 6.1 2.0 (2.0/4.3) 3.0 (3/14) 

idct_8x8_12q4 2/1 49.0 868.0 36.5 25.0 

isqrt1 9/2 1.3 22.9 0.3 (0.2/0.5) 82.2 (37/148) 

isqrt3 8/1 1.9 15.0 3.0 5.0 

isqrt4 4/2 1.6 22.9 3.9 (3.8/5.0) 7.1 (6/30) 

mad_16x16 2/1 15.0 163.0 9.6 24.0 

mad_8x8 2/1 7.0 83.0 7.4 16.0 

modexp 7/3 2.0 12.7 0.2 (0.2/0.3) 70.5 (70/105) 

motion_estimation 2/1 15.0 165.0 11.0 24.0 

pix_sat 8/2 2.0 12.0 1.9 7.0 

rgb_to_hsv_int 11/3 1.2 60.9 1.8 (1.6/3.2) 38.3 (38/41) 

rng 15/3 1.1 53.3 4.9 (4.8/4.9) 13.0 

sad_16x16 2/1 15.0 178.0 9.5 24.0 

sad_8x8 2/1 7.0 90.0 7.3 16.0 

sobel 8/1 3.7 44.0 3.8 13.0 

viterbi_gsm 7/3 4.8 33.4 6.6 (4.3/14.3) 4.7 (3/8) 

Table 6.6. Megablock characteristics for the ifs set when applying unrolling. 

The column Megablocks Det./Exec. shows how many Megablocks were found in the 

benchmarks, and how many of them could be used after identification. When considering the 
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no-ifs set, in most cases only one Megablock is detected. Unrolling increases the number of 

detected Megablocks in the affected benchmarks as besides the previously detected loops, it 

will also detect outer loops with the inner loops unrolled. Unrolling can detect loops in cases 

where no loops are found when looking for only inner loops (e.g., as in smooth). However, 

this strategy is less effective when the number of iterations of inner loops is variable. 

Columns Avg. It. per call and Avg. Op. per It. represent the average number of iterations 

per Megablock call, and the average number of executed operations per Megablock iteration, 

respectively. The higher the number of iterations and the number of operations per iteration, 

the longer the Megablock executes uninterruptedly in the RPU, diminishing the impact of 

communication overhead. 

Columns Avg. ILP and Avg. CPL are a weighted average of the ILP and CPL of the 

executed Megablocks, respectively. If the minimum and/or the maximum value are different 

from the average, they are presented between parentheses. 

Considering the innerloops case, the ILP of the Megablocks ranges between 0.3 and 7.8 

(average of 2.9) for the no-ifs set and between 0.2 and 8.1 (average of 3.0) for the ifs set. For 

the same sets, the CPL ranges between 3 and 451 (average of 22.2) and between 2 and 77 

(average of 13.9). After unrolling, the average ILP increases to 4.3 and 5.7 and the average 

CPL increases to 30 and 16.3, for the no-ifs and ifs set, respectively. Unrolling inner loops 

creates larger Megablocks with larger CPL, which can translate to Megablocks which execute 

uninterruptedly on the RPU for longer periods. The larger ILP  increases the parallelism 

potential. 

Some benchmarks have ILP below 1 (e.g., mulinv, wave_horz, isqrt1, modexp). All cases 

correspond to Megablocks which have high-latency instructions, such as integer division, 

which take several cycles to finish execution (e.g., an integer division operation has a latency 

of 32 clock cycles in the considered architecture). 

Figure 6.4 presents upper bound speedups considering three scenarios: in the Megablock 

(CPL based) scenario, the speedup is estimated considering the CPL of the baseline graph of 

the Megablock. This is equivalent to perform mapping with as many resources as needed. In 

the Megablock (Zero Cycles) scenario, the execution time of the RPU is considered to be 

zero, but considering communication overhead. This represents the maximum theoretical 

speedup possible with detected Megablocks. The final scenario considers that both the RPU 

execution time and communication time are zero. 
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Figure 6.4. Upper-bound speedups in the baseline case for three scenarios: execution time of the RPU 

is equal to Megablock CPL, execution time of the RPU is zero and execution time of the RPU and 

communication delays are zero. 
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Megablock (CPL based) and the upper bound scenario (Zero Cycles). This gap suggests there 

is ample head room for performance improving techniques (e.g., loop pipelining). 

Figure 6.5 and Figure 6.6 present estimation speedups and Instructions Per Cycle (IPC), 

when varying the number of available load/store units and the number of arithmetic-logical 

units, respectively. In Figure 6.5, the mapping was done using as many arithmetic-logic units 

as needed; in Figure 6.6 we limited the number of concurrent memory units to two. The lines 

represent arithmetic average values over the speedup and overall IPC of each benchmark of 

the set (in the sets where the unrolled option was used, we are considering all the benchmarks 

of the set, and not just the benchmarks where unrolling had impact).  

 

a) b) 

Figure 6.5. Average a) speedup and b) IPC when varying the maximum number of load/store units per 

row. 

 

a) b) 

Figure 6.6. Average a) speedup and b) IPC when varying the maximum number of arithmetic/logic units 

per row. 
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In Appendix B, Section B-1, we present the results using the geometric mean instead. In 

this case, the curves maintain their relative positions, although the absolute value is lower, 

and the gap between the innerloops case and the unrolled case shortens. 

Regarding the number of load/store units, the greatest increase in speedup is when passing 

from 1 unit to 2 units (improvement of 11% for the no-ifs set with innerloops, and 17% when 

using unrolling). There are further improvements when adding concurrent memory accesses. 

However, the additional complexity of a larger number of concurrent memory operations can 

outweigh the benefit in speedup. 

The benefit of adding parallel FUs becomes less effective at an earlier point in the 

innerloops case than the unrolled case. Unrolling exposes more parallelism, which can take 

advantage of a higher number of parallel FUs. For the baseline case in the no-ifs set, with a 

relatively small number of maximum FUs per row (e.g., 8 FUs) we can achieve 99% 

(innerloops) and 94% (unrolled) of the speedup when using unlimited resources. 

Considering a default setup with 2 concurrent memory units and 8 parallel FUs, with the 

baseline system we achieve an average overall application speedup of 2.1× and 1.2× when 

considering the no-ifs and the ifs set, for the case innerloops, respectively. We consider this 

architecture setup can represent a typical implementation, and is referred herein as 8 FUs-

2Mem. 

Unrolling increments the average speedup in both cases, to 2.7× and 1.4×, due to new 

Megablocks being detected in benchmarks were no Megablocks were detected before (e.g., 

smooth), or by detecting Megablocks which increase the coverage relative to inner loop 

detection (e.g., compress2, fdct, fir ). In some cases, unrolling decreases the speedup (e.g., 

gdc2, popcmpr), but the increase in speedup in the other benchmarks compensates for these 

cases. This behavior is related to loops which have a variable number of iterations. When 

considering only inner loops, they can be successfully detected as Megablocks. However, 

when unrolling, loops with a different number of iterations will be detected as different 

Megablocks. If these Megablocks have SAI conflicts, the identification will not be as 

effective as when using only inner loops. Thus, unrolling does not always mean improvement. 

The previous results assume that the processor and the RPU work at the same clock 

frequency. Figure 6.7 presents how the speedup varies when considering different ratios 

between the clock of the processor and of the RPU, for the case where the mapping can assign 

as many arithmetical-logical units as needed, and restricted to two memory operations per 
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cycle. For instance, a ratio of 1.5 means that if the processor is clocked at 100 MHz, the RPU 

is clocked at 150 MHz. 

 

Figure 6.7. Average speedup when varying the ratio between the RPU and GPP clock frequencies. 

Doubling the frequency of the RPU with respect to the processor increases the speedup by 

1.7× and 1.4×, for the no-ifs and the ifs set, respectively. The increase in the no-ifs set is 

greater because its benchmarks spend a longer portion of the execution time in the RPU than 

the benchmarks in the no-ifs set. 

Figure 6.8 presents individual speedups for the baseline case, when using the setup 8 FUs-

2Mem. Overall, considering the complete set of 66 benchmarks, for the innerloops case we 

achieve speedups from 0.5× to 4.8×, with an average speedup of 1.7× (or 1.4×, when using 

the geometric mean). When activating unrolling of inner loops, we achieve speedups from 

0.4× to 6.4×, with an average speedup of 2.2× (or 1.6×, when using the geometric mean). 

After applying if-conversion and graph transformation techniques, the average speedups 
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using the geometric mean, for the innerloops and unrolled cases respectively. 
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Figure 6.8. Individual overall speedups for the baseline case, considering an RPU with a maximum of 8 

parallel FUs and 2 load/store operations per cycle. 
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twice the execution time (2.29× in median_3x3). The examples with higher increases 

correspond to cases whose kernels also have a higher number of if statements (see Table 6.2). 

 

Benchmark 
Original (#Clock 

Cycles) 
Adapted (#Clock 

Cycles) 
Ratio 

adpcm_coder 61,841  92,308  1.49 

adpcm_decoder 46,516  83,079  1.79 

Boundary 180,730  291,024  1.61 

bubble_sort 52,095  97,325  1.87 

change_brightness 15,610  23,553  1.51 

Compositing 48,283  56,293  1.17 

conv_3x3 14,933  15,587  1.04 

crc32 79,562  141,093  1.77 

Divlu 456,708  533,093  1.17 

gcd1 678,177  1,099,497  1.62 

idct_8x8_12q4 150,679  308,851  2.05 

isqrt1 183,449  190,403  1.04 

isqrt2 185,919  243,093  1.31 

isqrt3 29,527  31,993  1.08 

isqrt4 15,932  21,493  1.35 

mad_16x16 1,010,712  1,209,363  1.20 

mad_8x8 261,145  312,339  1.20 

Max 22,626  30,820  1.36 

median_3x3 75,225  172,159  2.29 

Modexp 1,875,680  2,485,980  1.33 

motion_estimation 1,088,464  1,285,122  1.18 

Perimeter 10,224  15,007  1.47 

pix_sat 31,116  44,103  1.42 

rgb_to_hsv_int 65,175  115,113  1.77 

Rng 41,447  43,150  1.04 

sad_16x16 39,515  47,195  1.19 

sad_8x8 20,535  24,375  1.19 

Sobel 49,953  59,534  1.19 

viterbi_gsm 117,157  133,600  1.14 

Average - - 1.41 

Table 6.7. Cycle count and ratio of the ifs set, before and after if-conversion. 

In this thesis, all speedups related to benchmarks which were modified by if-conversion 

techniques, such as the ifs (adapted) set, are relative to the execution time of the original 

unmodified program, and can be directly compared with all the other speedups (e.g., the 

speedups of the ifs set). The IPC values reflect the changes in the adapted code. 
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Table 6.8 presents some of the characteristics of the benchmarks in the ifs (adapted) set 

after adapting the source code of the ifs set.  

 

Benchmark Kernel LOC #loops Max. Loop nesting level 
#Input/Output 

Arrays 
adpcm_coder 66 1 0 1/1 

adpcm_decoder 50 1 0 1/1 

Boundary 13 2 1 1/2 

bubble_sort 17 2 1 1/0 

change_brightness 19 1 0 1/1 

Compositing 15 1 0 2/1 

conv_3x3 40 2 1 2/1 

crc32 11 1 0 0/0 

Divlu 15 1 0 0/0 

gcd1 16 1 0 0/0 

idct_8x8_12q4 177 4 1 1/1 

isqrt1 33 1 0 0/0 

isqrt2 15 1 0 0/0 

isqrt3 17 1 0 0/0 

isqrt4 15 1 0 0/0 

mad_16x16 26 4 3 2/1 

mad_8x8 25 4 3 2/1 

Max 10 1 0 1/0 

median_3x3 73 1 0 1/1 

Modexp 11 1 0 0/0 

motion_estimation 18 4 3 2/1 

Perimeter 24 1 0 1/1 

pix_sat 12 1 0 1/0 

rgb_to_hsv_int 24 1 0 3/1 

Rng 24 1 0 1/1 

sad_16x16 11 2 1 1/1 

sad_8x8 11 2 1 1/1 

sobel 28 1 0 1/1 

viterbi_gsm 29 4 2 3/2 

Table 6.8. Characteristics of the benchmarks which form the set ifs (adapted). 

Table 6.9 and Table 6.10 present detected Megablock characteristics of the ifs (adapted) 

set, for the innerloops and unrolled cases, respectively. Applying if-conversion had two 

effects in Megablock detection and execution. In one hand, it enabled the detection of 

Megablocks on benchmarks were previously there were no Megablocks detected (e.g., 

adpcm_coder, adpcm_decoder, crc32, median_3x3). In the other hand, it decreased the 



110 

 

number of total detected Megablocks in other benchmarks, making the ratio between detected 

Megablocks and executed Megablock equal to one (i.e., all detected Megablocks are 

executed) in many cases (e.g., change_brightness, rgb_to_hsv_int, rng, sobel). 

 

Benchmark 
Detected/ 
Executed 

Megablocks  

Avg. It. per 
call  

Avg. Op. 
per It. 

 Avg. ILP 
(Min/Max) 

 Avg. CPL 
(Min/Max) 

adpcm_coder 1/1 1023.0 88.0 2.1 41.0 

adpcm_decoder 1/1 1023.0 79.0 2.2 36.0 

boundary 1/1 99.0 27.0 3.9 7.0 

bubble_sort 1/1 62.0 23.0 2.3 10.0 

change_brightness 1/1 99.0 22.0 1.7 13.0 

compositing 1/1 199.0 27.0 1.7 16.0 

conv_3x3 0/0 N.A. N.A. N/A N/A 

crc32 1/1 7.0 12.0 2.0 6.0 

divlu 1/1 31.0 15.0 1.9 8.0 

gcd1 1/1 166.2 11.0 1.4 8.0 

idct_8x8_12q4 2/2 7.0 355.0 15.3 (9.5/21.0) 21.0 (15/27) 

isqrt1 2/1 1.1 70.0 0.7 99.0 

isqrt2 1/1 15.0 13.0 2.2 6.0 

isqrt3 1/1 15.0 17.0 2.1 8.0 

isqrt4 1/1 5.0 32.0 2.7 12.0 

mad_16x16 1/1 15.0 17.0 1.9 9.0 

mad_8x8 1/1 7.0 17.0 1.9 9.0 

max 1/1 2047.0 14.0 1.4 10.0 

median_3x3 1/1 998.0 172.0 2.5 69.0 

modexp 1/1 29.8 17.0 0.5 37.0 

motion_estimation 1/1 15.0 19.0 2.1 9.0 

perimeter 1/1 479.0 30.0 3.0 10.0 

pix_sat 1/1 1999.0 21.0 1.5 14.0 

rgb_to_hsv_int 1/1 499.0 162.0 3.4 47.0 

rng 1/1 498.0 70.0 4.4 16.0 

sad_16x16 1/1 15.0 17.0 1.9 9.0 

sad_8x8 1/1 7.0 17.0 1.9 9.0 

sobel 1/1 957.0 61.0 3.1 20.0 

viterbi_gsm 2/2 7.0 41.0 4.8 (4.3/5.3) 8.0 (3/13) 

Table 6.9. Megablock characteristics for the ifs-adapted set, only inner loops. 

When comparing the ifs (adapted) set with the ifs set, the number of iterations generally 

increases. As the if-conversion technique includes several paths in the same Megablock, it can 

execute uninterruptedly in the RPU for a higher number of iterations. 
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Benchmark 
Detected/ 
Executed 

Megablocks 

Avg. It. 
per call  

Avg. Op. 
per It. 

 Avg. ILP 
(Min/Max) 

 Avg. CPL 
(Min/Max) 

conv_3x3 1/1 149.0 99.0 4.5 22.0 

crc32 2/1 999.0 109.0 2.2 50.0 

idct_8x8_12q4 4/2 49.0 2855.5 82.2 (44.5/119.9) 32.0 (26/38) 

isqrt1 4/1 1.7 82.0 0.5 169.0 

isqrt2 2/1 999.0 225.0 2.3 99.0 

isqrt3 2/1 99.0 287.0 2.5 114.0 

isqrt4 2/1 99.0 208.0 2.8 75.0 

mad_16x16 2/1 15.0 278.0 11.1 25.0 

mad_8x8 2/1 7.0 142.0 8.4 17.0 

motion_estimation 2/1 15.0 312.0 12.5 25.0 

sad_16x16 2/1 15.0 277.0 11.1 25.0 

sad_8x8 2/1 7.0 141.0 8.3 17.0 

Table 6.10. Megablock characteristics for the ifs-adapted set when applying unrolling. 

For the innerloops case, the average ILP decreases slightly (from 3.0 to 2.7), while in the 

unrolled case, it increases (from 5.7 to 6.5). The change in ILP between the ifs and ifs 

(adapted) sets is not significant (less than one operation), when considering the impact of 

if-conversion on the value of ILP of the whole set. However, the individual ILP does not have 

a general behavior and its increase or decrease depends on the benchmark. 

The average CPL significantly increases, from 13.9 to 20.3 and from 16.3 to 35.9 for the 

innerloops and unrolled cases, respectively, reaching similar values to the corresponding 

average CPL of the no-ifs set (22.2 and 30.0). 

Figure 6.9a) and Figure 6.9b) presents upper bound speedups for the ifs (adapted) set, 

when considering only inner loops and inner loop unrolling, respectively. The average 

speedup potential of the ifs set is one order of magnitude below the potential of the no-ifs set 

(see Figure 6.4). After if-conversion the gap almost disappears. 

If-conversion increases both the average speedup and the average IPC (see Figure 6.10 

and Figure 6.11). For the ifs (adapted) set, the effect of enabling unrolling has a more 

pronounced effect in the values of speedup. The higher steepness of the slop in the clock ratio 

lines of the ifs (adapted) set (see Figure 6.12) is related to a higher portion of RPU execution. 

Appendix B, Section B-2, presents the results using the geometric mean instead. In this case, 

the performance of the adapted sets continues to be consistently above the performance of the 

unmodified sets. 
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a) 

 

b) 

Figure 6.9. Upper bound speedups after if-conversion a) when considering inner loops and b) when 

unrolling inner loops. 

 

a) b) 

Figure 6.10. Average a) speedup and b) IPC for adapted code when varying the maximum number of 

load/store units per row. 
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a) b) 

Figure 6.11. Average a) speedup and b) IPC for adapted code when varying the maximum number of 

arithmetic/logic units per row. 

 

Figure 6.12. Average speedup for adapted code when varying the ratio between the RPU and GPP clock. 
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Benchmark IR IR + CFP IR + CFP + IS 
compress2 3% -14% -16% 

corr_gen 26% 8% -9% 

fdct_8x8 -9% -11% -13% 

fft 30% 30% 15% 

fir 20% -2% -17% 

gcd2 0% 0% 0% 

maxstr1 10% -13% -19% 

maxstr2 2% -2% -20% 

mulinv 1% -9% -41% 

popcmpr 5% 4% 3% 

smooth 14% -21% -40% 

wave_horz 13% -1% -6% 

wave_vert 18% -10% -24% 

ycbcr422p_rgb 8% 1% -5% 

average 10% -3% -14% 

Table 6.11. Decrease in the number of Megablock operations, for the unrolled no-ifs set considering three 

transformations. 

Benchmark IR IR + CFP IR + CFP + IS 
conv_3x3 22% 7% -5% 

crc32 -16% -36% -38% 

idct_8x8_12q4 25% 24% 23% 

isqrt1 1% -7% -16% 

isqrt2 1% -30% -31% 

isqrt3 -4% -23% -24% 

isqrt4 1% -15% -16% 

mad_16x16 13% -7% -14% 

mad_8x8 13% -7% -15% 

motion_estimation 18% 0% -19% 

sad_16x16 13% -7% -8% 

sad_8x8 13% -7% -9% 

average 7% -9% -14% 

Table 6.12. Decrease in the number of Megablock operations, for the unrolled ifs-adapted set considering 

three transformations. 

The first column represents the ratio when the assembly instructions are converted into the 

IR. The conversion can either increase or decrease the number of operations, depending on 

the instructions being converted. Converting memory instructions increases the number of 

operations, due to the unfolding of the instruction into the operations to calculate the address 

and the memory operation. Other instructions, such as nops or auxiliary instructions such as 
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imm, contribute to a reduced number of operations. On average, we have an increase of 10% 

and 7%, for the no-ifs and ifs (adapted) sets, after transforming the instructions to the IR. 

Applying CFP generally decreases the number of operations, to -3% and -9% (no-ifs and 

ifs (adapted)) of the original assembly instructions on average. In most cases, the reduction 

provided by CFP is greater than the increase that results from transforming the instructions 

into the IR. Applying the IS transformation further decreases the number of operations. The 

effect is more pronounced in the no-ifs set than in the ifs (adapted) set. Considering this 

sequence of transformations (i.e., IR+CFP+IS), the reduction is on average the same in both 

sets (-14% for the no-ifs and ifs (adapted) sets) 

When considering the unrolled case, we observed that generally the transformations 

resulted in minor increases in the speedup and minor decreases in the IPC (see Figure 6.13, 

Figure 6.14, and Figure 6.15). 

For the 8 FUs-2Mem configuration there was an increase of 1.07× and 1.03×, and a 

decrease in the IPC to 95% and 92% of the original value, for the no-ifs set and the ifs 

(adapted) set, respectively. The increase in speedup can be attributed to a decrease in the CPL 

of the Megablock in a few benchmarks. The most noticeable speedup was observed for the 

benchmark fir  (1.5×). The decrease in IPC was expected, since on average, the 

transformations reduced the number of operations by 14%, for the affected Megablocks. 

While these transformations did not affect performance significantly, they are useful to lower 

the mapping effort, by reducing the size of the Megablocks to implement. 

 

a) b) 

Figure 6.13. Average a) speedup and b) IPC after graph transformations, when varying the maximum 

number of load/store units per row 
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a) b) 

Figure 6.14. Average a) speedup and b) IPC after graph transformations, when varying the maximum 

number of arithmetic/logic units per row. 

 

Figure 6.15. Average speedup after graph transformations, when varying the ratio between RPU and GPP 

clock frequencies. 
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attribute this behavior to the way the synthesis tool maps certain FPGA primitives (e.g., 

SRLs), used in the VHDL code. 

 

 

 

Figure 6.16. LUTs, FFs and estimated maximum frequencies for Megablock Detector hardware 

designs. 
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as higher values for the maximum pattern size implies more complex logic paths in some parts 

of the Megablock Detection module (e.g., the comparison between the current pattern element 

and all the positions in the FIFO). There are engineering solutions which can mitigate the 

decrease in frequency, at the cost of some latency (e.g., by using fan-out trees). 

However, the current implementation works at sufficient speed for the considered 

scenarios. For instance, considering the base case of a maximum pattern size of 24 elements, 

the maximum estimated clock frequency is between 134 MHz and 147 MHz (depending on 

the bit-width of the elements), which is enough to meet the clock frequency of the MicroBlaze 

soft processor. 

Higher bit-widths generally produced designs with lower clock frequencies, although the 

impact is relatively small. The maximum impact of the bit-width on the clock frequency is on 

average 14% for the cases studied. 

6.5 Megablock Pipelining 

To demonstrate the proposed pipelining technique (presented in Section 5.6), we 

developed a proof-of-concept VHDL generator which converts a Megablock graph into a 

specialized hardware module (see Figure B.9). For a given Megablock, the tool can generate 

two types of modules: an implementation of the SAr architecture described in Section 5.5.2, 

and a pipelined version of the same architecture using the overlapping scheduled. The 

generation of the pipelined architecture is performed after applying if-conversion (when 

applicable) and the Megablock graph transformations described in Section 5.1. The version of 

the generator used herein does not support Megablocks with memory operations. 

For the first part of this section, we consider a set of simple benchmarks without memory 

operations, named memoryless (i.e., compress1, count, even_ones, expand, fibonacci, 

hamming_dist, popcmpr, reverse, and gcd1). We implemented Megablocks representing a 

kernel of each benchmark, and estimated the clock cycles needed by the hardware module for 

executing the pipelined and the non-pipelined versions of the considered Megablocks using 

equation (5.1). We also estimated overall application speedups, taking into account all 

communication overheads. Considering the set memoryless, we synthesized two versions of 

the hardware module, with and without pipelining, to measure resource usage, confirm the 

execution cycles and validate the approach. In the end of the this section, we present overall 
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speedup estimations after pipelining considering the no-ifs and the ifs (adapted) sets of the 

previous section. 

We consider that communication between the GPP and the hardware module is done 

through FSLs (Fast Simplex Link) [90] using get and put instructions, one for each 

Megablock input or output, respectively. Each one of these instructions takes one clock cycle 

to execute [90]. Based on an implementation (presented in Appendix A) of the architecture of 

Figure 5.10b), we estimate that the value for the term PartitionerCy in equation (5.4) has a 

constant overhead of 8 clock cycles per Megablock call. 

The SAr architecture can have as many FUs in a row and as many exits per row as needed. 

We defined the execution cycles of the operations as identical to the clock cycles needed by 

the MicroBlaze for equivalent instructions, when the processor is optimized for speed [90]. 

Similarly to other approaches [14], we assume each memory operation can be done in a single 

clock cycle. We also consider that the RPU is connected to local memories which support up 

to two simultaneous memory operations per cycle (e.g., dual-port BRAMs). 

Table 6.13 presents the overall application IPC (Instructions per Cycle) achieved 

considering the Megablock for each benchmark in different kinds of RPUs. As expected, the 

IPC considering Megablocks and the RPU is higher than the IPC achieved by the MicroBlaze, 

which is below 1. Since all the RPUs used have several FUs executing in parallel, the IPC 

usually increases, proportionally to the ILP of the Megablock. 

With pipelining, more than one row of the RPU is executing per clock cycle (in the steady 

state, all FUs execute in parallel in each iteration), and the IPC relative to the non-pipelined 

RPU increases. As expected, the IPC of overlapped schedule is consistently higher than the 

IPC of the sequential schedule. 

Table 6.14 summarizes the characteristics of the Megablock considered for each 

benchmark of the memoryless set, when mapped to the non-pipelined version of the SAr. The 

number of operations in the Megablocks ranges between 4 and 11. When mapped to the non-

pipelined SAr the number of rows ranged between 3 and 8, with the largest row having 3 FUs. 

The number of iterations per call ranges from around 8 (popcmpr) to a few thousands 

(fibonacci), having most benchmarks a number of iterations around 30. 
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Benchmark MicroBlaze 
RPU Non-
Pipelined 

RPU Pipelined 
Sequential 

RPU Pipelined 
Overlapping 

compress1 0.88 2.00 3.03 3.72 
count 0.85 2.00 2.53 3.30 

even_ones 0.85 2.00 3.36 4.93 
expand 0.88 2.00 3.03 3.72 

fibonacci 0.86 1.33 3.01 5.90 
hamming_dist 0.85 2.00 3.36 4.93 

popcmpr 0.88 1.50 3.41 4.80 
reverse 0.87 2.33 3.03 3.96 

gcd1 0.70 1.38 2.58 3.00 

Table 6.13. IPC when the Megablock for each benchmark is executed in several platforms. 

Benchmark FUs  Rows Max. FUs p/ row 
Avg. Iterations p/ 

call 
compress1 8 4 3 29.0 

count 6 3 2 31.0 
even_ones 6 3 3 31.0 

expand 8 4 3 29.0 
fibonacci 4 3 2 2378.0 

hamming_dist 6 3 3 31.0 
popcmpr 6 4 2 8.4 

reverse 7 3 3 31.0 
gcd1 11 8 3 166.2 

Table 6.14. Megablock mapping characteristics on the non-pipelined architecture. 

Table 6.15 and Table 6.16 present a comparison between the overall speedup when using 

non-pipelined and pipelined RPUs with a sequential and an overlapping schedule, 

respectively. The first two columns, “Non-Pipelined Speedup” and “Pipelined Speedup”, 

indicate the overall speedup achieved when considering an RPU without and with pipelining. 

 

Benchmark Non-
Pipelined 
Speedup 

Pipelined 
Speedup 

Speedup 
Improvement 

Non-Pipelined 
CPL (#clock 

cycles) 

Pipelined CPL 
(Steady State) 
(#clock cycles) 

compress1 1.65 1.34 0.81 4 5 
count 1.72 1.36 0.79 3 4 
even_ones 1.68 1.63 0.97 3 3 
expand 1.66 1.34 0.81 4 5 
fibonacci 2.32 3.46 1.49 3 2 
hamming_dist 1.66 1.62 0.97 3 3 
popcmpr 1.00 1.03 1.03 4 3 
Reverse 1.88 1.49 0.80 3 4 
gcd1 0.97 1.06 1.10 8 7 
Average 1.62 1.59 0.98 3.89 4 

Table 6.15. Comparing a non-pipelined and a pipelined architecture with sequential scheduling. 
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Benchmark Non-
Pipelined 
Speedup 

Pipelined 
Speedup 

Speedup 
Improvement 

Non-Pipelined 
CPL (#clock 

cycles) 

Pipelined CPL 
(Steady State) 
(#clock cycles) 

compress1 1.65 1.54 0.93 4 4 
count 1.72 1.64 0.95 3 3 
even_ones 1.68 2.07 1.23 3 2 
expand 1.66 1.54 0.93 4 4 
fibonacci 2.32 6.83 2.95 3 1 
hamming_dist 1.66 2.04 1.23 3 2 
popcmpr 1.00 1.16 1.16 4 2 
reverse 1.88 1.79 0.95 3 3 
gcd1 0.97 1.22 1.26 8 6 
average 1.62 2.20 1.36 3.89 3 

Table 6.16. Comparing a non-pipelined and a pipelined architecture with overlapping scheduling. 

Being each benchmark already accelerated by the RPU, the objective of Megablock 

pipelining is to increase the speedup provided originally by the RPU. The column “Speedup 

Improvement” represents the ratio between the non-pipelined speedup and the corresponding 

pipelined speedup. A value of 1 means that there is no difference in speedup between the non-

pipelined and the pipelined version; a value greater than one represents an improvement in the 

speedup; a value lower than one represents a slowdown. 

For instance, we estimate an overall speedup of 1.66× for the benchmark hamming_dist, 

before pipelining. With the pipelining overlapping schedule, the performance of the RPU can 

be improved by 1.23×. This translates into an overall speedup of 2.04×, after pipelining.  

In this set of simple benchmarks, when using sequential scheduling, performance 

degradation happens in most of the cases after applying pipelining. Pipelining with 

overlapping schedule leads consistently to better performance than the sequential schedule. It 

is sometimes able to achieve speedups of benchmarks showing slowdowns with the sequential 

schedule (evenones and hamming_dist). 

However, even with overlapping scheduling, the improvements are not very significant. 

With the exception of the fibonacci benchmark, which achieves a speedup increase from 2.3× 

to 6.8× after pipelining (an improvement of around 3.0×), the other benchmarks achieve a 

speedup of at most 2× (with improvements between 1.16× and 1.26×). In four benchmarks 

there were still slowdowns. We attribute these results to the fact of considering Megablocks 

without memory accesses. In those Megablocks, it is highly likely that the computations for 

the update of the inputs represent a significant part of the critical path of the Megablock, 

increasing the CPL of the Input Module (Section 5.6.2) and, consequently, the number of 

cycles needed to complete an iteration. In Megablocks with memory accesses, it is more 
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likely for the update of inputs to be related to the update of the addresses for the memory 

accesses. This can be confirmed with the CPL columns of Table 6.15 and Table 6.16. To 

achieve improvements when pipelining, the number of cycles of the steady state of the 

pipelined version must be lower than the number of cycles for a single original non-pipelined 

iteration.  

Figure 6.17 compares the resource increase between RPUs without and with pipelining 

using an overlapping schedule. 

 

Figure 6.17. FPGA resources increase when using pipelining with overlapping schedule over the non-

pipelined implementation. 

The values show increases relative to the FPGA resources of the implementation of the 

non-pipelined modules. In all cases, the pipelined implementation uses more FF (flip-flop) 

resources (between 1.3× and 1.7× more resources), and generally, the LUTs (look-up table) 

resources increase too (between 1.01× and 1.8× more resources). This is to be expected, as the 

pipelined version includes additional modules (e.g., IM), which can have several stages. The 

maximum clock frequencies in the pipelined modules have moderate decreases for most of 

the benchmarks (between 0.71× and 1.02×).  

Much of the increase in resources can be explained by the characteristics of the 

benchmarks. Having the CPL of the pipelined module very close to the CPL of the non-

pipelined module indicates that the IM replicates most of the critical path of the LM. As these 

are small benchmarks, the critical path represents a big portion of the Megablock body. We 
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expect that in examples with memory accesses, the IM represents a small portion of the 

Megablock body. 

In one benchmark, reverse, the number of LUTs decreases. When the sub-modules of the 

VHDL description of the pipelined version of this benchmark are implemented separately, the 

number of LUTs is always the same or greater for the non-pipelined version. We suggest that 

the number of LUTs decreases in the main module due to global hardware synthesis 

optimizations. The increased number of FFs enables the synthesis tool to use the FF logic 

(e.g., set and clear inputs) to implement some of the logic which was previously mapped to 

LUTs. 

When considering the set of 66 benchmarks used in Section 6.3, as the no-ifs and the ifs 

(adapted) sets contain benchmarks with memory accesses, to apply the pipelining technique 

we need to ensure the guarantees presented in Section 5.6.1 to avoid inter-iteration 

dependencies. After examining the source code of the benchmarks, we discovered 5 

benchmarks, out of 66 (7.6%), which did not respect the guarantees. A number of them 

compute some state during an iteration which is needed in the next iteration, e.g., rng, viterbi, 

md5. Others, e.g., bubble_sort, fft, modify parts of the input array and generate loop-carried 

dependencies which cannot be removed without changing the algorithm. These 5 benchmarks 

were not considered in the following results. 

We observe significant increases in both speedup and IPC, when using pipelining with 

overlapping schedule (see Figure 6.18, Figure 6.19, and Figure 6.20). The ifs (adapted) set in 

particular shows great speedup potential when loop unrolling is enabled, which is similar or 

greater than the speedup of the no-ifs set under the same conditions. Appendix B, Section B-3 

and Section B-4, present the results using the geometric mean instead, for sequential 

scheduling and overlapping scheduling, respectively. When considering the geometric mean, 

the ifs (adapted) set shows lower speedups than the no-ifs set for the unrolled case. For the 

innerloops case, the gap between the sets is larger. 

In Figure 6.18, when going from a maximum of 8 memory operations to an unrestricted 

number of memory operations there is a significant spike in IPC that is not followed by the 

speedup. We attribute this behavior to a single IPC value which is distant from the rest of the 

data, from the benchmark idct_8x8. The lines of IPC and speedup have a similar behavior in 

Figure B.10 in Appendix B-4, which uses the geometric mean (which is less affected by 

extreme values) instead of the arithmetic mean. 
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a) b) 

Figure 6.18. Average a) speedup and b) IPC after pipelining with overlapping schedule, when varying the 

maximum number of load/store units per row. 

 

 

a) b) 

Figure 6.19. Average a) speedup and b) IPC after pipelining with overlapping schedule, when varying the 

maximum number of arithmetic/logic units per row. 

 

Figure 6.20. Average speedup after pipelining with overlapping schedule, when varying the ratio between 

RPU and GPP clock frequencies. 

Figure 6.21 presents overall application speedups when considering pipelining with 

overlapping schedule and the 8 FUs-2Mem configuration.  
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We observe that in several cases, the pipelining contribution amplifies the improvement of 

the RPU by a factor of 2 or more. For instance, we estimate a speedup of 3× for the 

benchmark vecsum, before pipelining. With an overlapping schedule, the performance of the 

RPU can be improved by 1.96×. This translates into an overall speedup of 5.8×, after 

pipelining. 

 

Figure 6.21. Individual overall speedups for a pipelined architecture with overlapping schedule, 

considering a maximum of 8 parallel arithmetic/logic FUs and 2 load/store operations per clock cycle. 

There are noticeable speedups after pipelining, for several benchmarks. For the innerloops 

case we have change_brightness, from 1.6× to 9.3×; checkbits, from 4.1× to 12.4×; 
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compositing, from 1.6× to 9.3×; fibonacci, from 2.3× to 6.8×; gouraud, from 3.1× to 9.1×; 

quantize, from 2.2× to 6×; and rgb_to_hsv_int, from 2.3× to 7.0×. For the unrolled case we 

have compress2, from 2.5× to 32×; crc32, from 1.6× to 32.0×; isqrt3, from 2.5× to 25.3×; 

isqrt4, from 2.0× to 18.1×; and pix_sat, from 1.1× to 7.4×. 

These speedups can be explained by two factors presented in Table 6.17. The first factor is 

the ratio between the average CPL of the executed Megablocks in the baseline scenario (CPL 

(Baseline) column), and the average number of cycles of the steady state when the 

Megablocks execute using the overlapping schedule (Steady State Latency column). The ratio 

between these two values (Ratio column) is an upper-bound for the possible increase in 

speedup when applying pipelining. For instance, crc32 went from a speedup of 1.6× to a 

speedup of 32× after pipelining, which represents an improvement of 20× for a corresponding 

ratio of 24.5×. The second factor is the number of average iterations per Megablock call (last 

column). Note that in all cases, the number of average iterations is high (above 99). When 

using pipelining, the improvement comes from execution in the steady state. The higher the 

portion of execution is spent in the steady state (instead of the prologue), the closer the 

improvement is to the upper bound speedup given by the ratio between the baseline CPL and 

the steady state latency. 

 

Benchmark 
CPL (Baseline) 
(#clock cycles) 

Steady State 
Latency 

(#clock cycles) 
Ratio 

Speedup 
Improvement 

Avg. It. p/ 
call 

change_brightness  12 2 6.0 5.81 99 

checkbits  16 4 4.0 3.02 166 

compositing 15 2 7.5 5.81 199 

fibonacci  3 1 3.0 2.96 2,378 

gouraud 6 2 3.0 2.94 1,999 

quantize  6 2 3.0 2.69 199 

rgb_to_hsv_int  55 16 3.4 3.04 499 

compress2  65 4 16.3 12.80 999 

crc32  49 2 24.5 20.00 109 

isqrt3  112 2 56.0 10.12 99 

isqrt4 73 2 36.5 9.05 99 

pix_sat  14 2 7.0 6.73 2,000 

Table 6.17. CPL comparison between baseline and pipelined with overlapping schedule. 
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Overall, we could apply the loop pipelining technique to 61 of the 66 benchmarks 

originally considered in this chapter. Considering this subset of 61 benchmarks and loop 

pipelining with overlapping schedule, for the innerloops case we achieve speedups from 0.2× 

to 28.5×, with an average speedup of 3.1× (or 1.8×, when using the geometric mean). When 

activating unrolling of inner loops, we achieve speedups from 0.2× to 32×, with an average 

speedup of 5.6× (or 3×, when using the geometric mean). 

When considering only the benchmarks which provide speedup, for the innerloops case 

we achieve an average speedup of 4.4× (from 1.5× to 28.5×) over a set of 28 benchmarks for 

the no-ifs set, and an average speedup of 3.6× (from 1.1× to 9.7×) over a set of 15 benchmarks 

for the ifs (adapted) set. When considering unrolling of inner loops, in the no-ifs set the 

average speedup increases to 6.2× (from 1.5× to 32×) over a set of 32 benchmarks, and in the 

ifs (adapted) set the average speedup increases to 6.5× (from 1.1× to 32×) over a set of 22 

benchmarks. 

Combining the techniques previously presented (inner loop unrolling, if-conversion, graph 

transformations, loop pipelining) we were able to achieve results on par to those found in 

literature. For instance, Warp [13], the work we believe closest to our approach (e.g., uses 

loops as detection unit), reports an average speedup of 6.3× over a set of 15 benchmarks. Paek 

et al. [58], which also implements loop pipelining in CGRAs, but on a static context, report an 

average speedup of 9.4× when using examples of the DSPstone benchmark suite [127].  

6.6 Application Examples 

6.6.1 3D Path Planning Application 

Using the same approach of Section 6.3, we applied the dynamic partitioning technique to 

an airborne collision avoidance application, known as 3D Path Planning (herein referred as 

3dpp), provided by Honeywell [128]. It consists of 841 lines of C code, distributed over 10 

files and 48 functions. A step of the application requires 50,601,067 MicroBlaze clock cycles. 

Most of the application time (~80%) is spent in a single function, gridIterate, which has 

61 lines of C code and a nested loop with 3 levels. The function was modified with the 

if-conversion technique described in Section 4.5. When using this technique, usually the 

software execution time of the program increases, due to the execution of all paths of the loop 

in each iteration. In this case, it reduced slightly, representing 99.5% of the previous 
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execution time. We consider that two factors contribute to this effect: first, the loop contains 

one frequent path which is computationally intensive, while the other paths are rarely taken 

and are very lightweight (e.g., attribution of a constant to a variable). This contributes to an 

execution time of the function that is at least similar to the original. The reduction comes from 

the loop not having branches, eliminating the branch misprediction penalties which happen in 

the original function. 

Table 6.18 presents the characteristics extracted from the 3dpp application, when 

considering the default setup for Megablock detection of a maximum pattern size of 24, and 

the basic block as detection unit. In the current implementation, 10 Megablocks are 

responsible for about 64% and 87% of the software execution time, when considering inner 

loops or loop unrolling, respectively. We obtained a speedup of 1.1× when mapping only 

innermost loops, and a speedup of 2× when unrolling innermost loops. Most of the speedup 

improvement of the unrolled case comes from the higher coverage and higher number of 

iterations per call, and higher number of operations executed per iteration (reducing 

overhead). The average ILP for both cases is above 4, a positive contributor to the overall 

speedup.  

 

Unrolled 
Loops 

Speed 
up 

Coverage Megablocks 
Det./Exec. 

Avg. It. 
p/ call  

Avg. Op. 
p/ It. 

 Avg. ILP 
(Min/Max) 

 Avg. CPL 
(Min/Max) 

No 1.1 64% 11/10 9.4 36.0 4.1 (2.5/7.0) 9.3 (2/33) 

Yes 2.0 87% 22/10 17.1 153.2 4.4 (2.9/8.0) 39.6 (2/165) 

Table 6.18. Characteristics for the execution of the application 3dpp. 

6.6.2 Dynamic Partitioning on an Embedded Processor – fir 

We have developed Java tools (see Appendix C) which implement and simulate some of 

the phases of dynamic partitioning (e.g., detection, translation). Additionally, we have ported 

the tools to the Android platform [129] and built a software version of the Megablock 

Detector in C language. This way, it was possible to measure the execution time of the several 

steps of these phases, when executing on embedded processors. 

In this section we focus on an application and present examples of the several steps for 

that application. We selected the fir  benchmark since it was complex enough to be an 

interesting example, and small enough to illustrate the process. 

Figure 6.22 presents the C code for the kernel of the fir  function. After compiling the code 

according to the setup described in Section 6.1, we simulated it so we could detect 
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Megablocks. We used the default setup for Megablock detection (24 as maximum pattern 

size, and basic block as detection unit) and enabled loop unrolling. Two Megablocks where 

detected, one representing 0.1% of the software execution time, and the other representing 

around 98% of the software execution time. The first Megablock was discarded, only the 

latter was considered in this example. 

void fir_original(int x[], int c[], int M1, int N1,  int *y) { 

int j, i; 

y[0]=c[0]*x[0]; 

y[1]= c[0]*x[1]+c[1]*x[0]; 

y[2]= c[0]*x[2]+c[1]*x[1]+c[2]*x[0]; 

 

for(j=3; j<M1; j++) { 

  int output=0; 

  for(i=0; i<N1; i++) { 

    output+=c[i]*x[j-i]; 

  } 

  y[j] = output; 

} 

}  

Figure 6.22. C code for a fir function. 

Figure 6.23 shows the considered Megablock, and contains three columns of information. 

The first column shows the addresses of the instructions of the Megablock body; the second 

column shows the assembly instructions executed by the MicroBlaze processor that form the 

Megablock; and the third column shows the corresponding graph operations when 

transforming the code to the graph representation. When an assembly instruction is 

represented by two or more graph operations (e.g., lw, lwi, sw), the additional graph 

operations appear separated by commas. 

The instruction addresses of the first column that are in bold (six in total) represent the 

addresses needed to detect the Megablock. They correspond to the first address of the six 

basic blocks that represent the Megablock. As explained in Section 4.3, two repetitions of the 

same sequence of addresses are enough to detect a Megablock, which means that 12 addresses 

where needed to detect this Megablock. 
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Address Instruction Graph Op. 

0x00000208 bleid r9, 52        → 0:lessOrEqualZero 

0x0000020C addk r10, r0, r0    → 1:add 

0x00000210 addk r8, r6, r0     → 2:add 

0x00000214 addk r7, r10, r0    → 3:add 

0x00000218 bslli r3, r7, 1026  → 4:sll 

0x0000021C lwi r5, r8, 0       → 5:add, 6:load 

0x00000220 lw r4, r11, r3      → 7:add, 8:load 

0x00000224 addik r7, r7, 1     → 9:add 

0x00000228 addik r8, r8, -4    → 10:add 

0x0000022C mul r4, r4, r5      → 11:mul 

0x00000230 rsubk r18, r7, r9   → 12:rsub_carry 

0x00000234 bneid r18, -28      → 13:equalZero 

0x00000238 addk r10, r10, r4   → 14:add 

0x00000218 bslli r3, r7, 1026  → 15:sll 

0x0000021C lwi r5, r8, 0       → 16:add, 17:load 

0x00000220 lw r4, r11, r3      → 18:add, 19:load 

0x00000224 addik r7, r7, 1     → 20:add 

0x00000228 addik r8, r8, -4    → 21:add 

0x0000022C mul r4, r4, r5      → 22:mul 

0x00000230 rsubk r18, r7, r9   → 23:rsub_carry 

0x00000234 bneid r18, -28      → 24:equalZero 

0x00000238 addk r10, r10, r4   → 25:add 

0x00000218 bslli r3, r7, 1026  → 26:sll 

0x0000021C lwi r5, r8, 0       → 27:add, 28:load 

0x00000220 lw r4, r11, r3      → 29:add, 30:load 

0x00000224 addik r7, r7, 1     → 31:add 

0x00000228 addik r8, r8, -4    → 32:add 

0x0000022C mul r4, r4, r5      → 33:mul 

0x00000230 rsubk r18, r7, r9   → 34:rsub_carry 

0x00000234 bneid r18, -28      → 35:equalZero 

0x00000238 addk r10, r10, r4   → 36:add 

0x00000218 bslli r3, r7, 1026  → 37:sll 

0x0000021C lwi r5, r8, 0       → 38:add, 39:load 

0x00000220 lw r4, r11, r3      → 40:add, 41:load 

0x00000224 addik r7, r7, 1     → 42:add 

0x00000228 addik r8, r8, -4    → 43:add 

0x0000022C mul r4, r4, r5      → 44:mul 

0x00000230 rsubk r18, r7, r9   → 45:rsub_carry 

0x00000234 bneid r18, -28      → 46:notEqualZero 

0x00000238 addk r10, r10, r4   → 47:add 

0x0000023C bslli r3, r12, 1026 → 48:sll 

0x00000240 addik r12, r12, 1   → 49:add 

0x00000244 sw r10, r19, r3     → 50:add, 51:store 

0x00000248 rsubk r18, r12, r22 → 52:rsub_carry 

0x0000024C bneid r18, -68      → 53:equalZero 

0x00000250 addik r6, r6, 4     → 54:add  

Figure 6.23. Assembly code and corresponding graph operations for the fir Megablock. 
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Table 6.19 contains execution times, in milliseconds, for several implementations of the 

pattern detector used to detect Megablocks, executing on different targets. The execution 

times represent the time each implementation needed to process the given number of 

addresses (column #Addresses). The given addresses are repetitions of the 6 address sequence 

of the fir  Megablock. The values in the column Hardware Module at 50MHz correspond to an 

implementation of the architecture described in Section 5.2, clocked at 50 MHz. It can 

process one address every clock cycle. The column MicroBlaze at 50MHz represents a C 

implementation of the algorithm in Figure 4.4, running directly on a MicroBlaze processor 

clocked at 50 MHz. Column Cortex-A8 at 1GHz corresponds to an implementation of the 

same algorithm in Java, running on a Cortex-A8 clocked at 1GHz, over the Android 2.2 

platform. 

 

#Addresses 
Time using 

Hardware Module 
at 50MHz (ms) 

Time using a 
MicroBlaze at 

50MHz – C (ms) 

Time using a 
Cortex-A8 at 

1GHz – Java (ms) 

Speedup (HW 
vs. MicroBlaze / 

HW vs. A8) 
12 0.0002 2.7 0.6 11,251/2,500 
24 0.0005 5.7 1.3 11,963/2,708 
48 0.0010 14.0 2.8 14,594/2,917 
96 0.0019 30.8 5.9 16,036/3,073 

192 0.0038 64.3 12.5 16,757/3,255 
384 0.0077 131.5 24.8 17,118/3,229 
768 0.0154 265.7 78.7 17,298/5,124 

Table 6.19. Execution times for several implementations of the pattern detector for Megablocks. 

Generally, the execution times grow linearly with the input (doubling the size of the input 

doubles the execution time). There is an exception in the Cortex case, where going from 384 

addresses to 768 addresses tripled the execution time, instead of doubling. We think this is 

due to calls from the system to the garbage collector, during execution of the detector. 

When comparing execution speeds, the hardware module is much faster than the software 

implementations: around 3,000× faster than the Cortex case and around 16,000× faster than 

the MicroBlaze case. This difference can be explained by the highly parallel design of the 

hardware module, and by the software version not being fully optimized for the target 

platforms. For the tested cases, excluding the last row, the execution time of the Cortex 

processor is around 5× faster than the execution time of the MicroBlaze processor. 

Table 6.20 shows average execution times, in milliseconds, when running a Java 

implementation of the Translation steps described in Section 5.3, on a Cortex-A8 clocked at 1 

GHz over an Android 2.2 platform. The Translation phase took, on average, about 79 ms to 
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transform the assembly code of the Megablock in Figure 6.23 into a mapping configuration 

for architectures of the kind described in Sections 5.5.1 and 5.5.4. The most expensive 

operation is the conversion from assembly code to the graph intermediate representation, 

representing 58% of the execution time. Next we have Placement and the Transform, each 

one taking 20% and 12% of the time, respectively. The most light-weight steps are the 

Routing and the Normalization, each one with 6% and 4% of the total execution time. 

Using the values of Table 6.19 to extrapolate an execution time for the case where we use 

an implementation in C, executing in a MicroBlaze at 50 MHz, we obtain a total time for the 

Translation phase of about 400 ms. 

 

Normalize 
Graph 

Converter 
Transform 

Mapping 
Total 

Placement Routing 
3.03 46.00 9.71 15.45 4.89 79.09 

Table 6.20. Average execution times in milliseconds of the Translation steps. 

6.7 Summary 

In this chapter we analyzed and evaluated the use of the Megablock as a loop for Dynamic 

Hardware/Software Partitioning. We used an extensive set of benchmarks from embedded 

system domains, and compared our loop detection method with the method used by Warp 

[125]. We concluded that the Megablock achieves coverage values close to the Warp method, 

while providing loops with straight-forward and clearly defined control-flow, which can be 

easily converted to data-flow representations. 

We estimated the overall application speedup achievable with the Megablock, considering 

66 benchmarks and several scenarios. Considering default mapping parameters, in the 

baseline scenario we estimate a speedup of 1.7× and 2.2× for the innerloops and the unrolled 

cases, respectively. Applying graph transformations and if-conversion increases the overall 

speedup to 1.8× and 2.4× for the innerloops and the unrolled cases, respectively. Graph 

transformations did not change the performance significantly, but helped in reducing the 

number of operations of the Megablock, which can reduce the mapping effort and 

configuration sizes. 

Applying the Megablock pipelining technique can significantly improve the overall 

application speedup. Considering this subset of 61 benchmarks and loop pipelining with 

overlapping schedule, we estimate an average speedup of 3.1× and 5.6× for the innerloops 
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and the unrolled cases, respectively. From the proposed optimization techniques, Megablock 

pipelining was the one with the highest impact on performance. 

We observed that, for the architecture parameters, the access to memory was a more 

limiting factor for the speedup than the number of available arithmetical/logical FUs. The 

speedup values stabilized very quickly for low number of arithmetical/logical FUs (e.g., 

between 4 and 8 FUs), while there was still noticeable increases in speedup when considering 

the scenario with unbounded memory accesses. However, we consider that the differences 

were not high enough as to justify the increased complexity of using more than 2 concurrent 

memory accesses per cycle. The biggest improvement in speedup, when considering the 

number of concurrent memory accesses, was consistently when going from 1 memory access 

to 2 concurrent memory accesses. 
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7  Conclusions 

The main objective of this thesis was to research Dynamic Hardware/Software 

Partitioning (DHSP) techniques, as a way to take advantage of a reconfigurable processing 

unit (RPU) acting as a coprocessor in a general purpose processor (GPP) based embedded 

computing system. The research efforts and experiments were focused on the development of 

algorithms and techniques in the context of dynamic partitioning, and on the speedups 

resultant with the migration of computations from the GPP to the RPU.  

We proposed novel techniques for dynamically partitioning applications at the binary 

level, as well as addressing the automatic migration of computations during runtime from a 

GPP to the RPU. As to maximize the impact of dynamic partitioning one must consider large 

portions of program execution, an important aspect of this work was to propose a novel kind 

of loop structure, attractive for architectures with native support to high-degrees of 

parallelism. This led us to the Megablock, a loop formed by repetitive sequences of 

instructions present during program execution. We found that the Megablock can represent 

significant portions of the program execution in most benchmarks, justifying its use as a 

detection unit for dynamic partitioning. Furthermore, being the Megablock a loop, it is 

inherently akin to hardware reuse and loop pipelining.  

The presented work proposes techniques for the detection, identification, implementation, 

and transformation of Megablocks, as well as a study of the impact of using the Megablock as 

a detection unit over an extensive set of benchmarks consisting of 66 functions/kernels. Using 

an automated approach, we were able to evaluate and explore the techniques proposed in this 

thesis over this set of benchmarks in a variety of situations.  

One of the objectives of this thesis was to test a general approach for dynamic 

partitioning. To evaluate the impact on automatically moving streams of instructions executed 

by a GPP to an RPU, we use a set of benchmarks which covers many situations and code 

characteristics, over several execution scenarios. Rather than being tied to a specific RPU, this 

thesis explored a number of architecture models, from specific implementations suitable for 

the today’s FPGA technology, to models possible only on future reconfigurable fabrics. We 

believe that the work presented tackle these issues by the following reasons:  
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1) As a general principle, we avoided limiting the scope of the proposed techniques when 

possible. For instance, the presented methodology can be applied to either online or 

offline scenarios. 

2) The Megablocks are detected through a pattern-matching technique which is fully 

agnostic to the instruction format of the GPP and can be applied to traces of 

instructions of other processors. 

3) Before optimizations and mapping, Megablocks are first converted to an RPU 

independent Intermediate Representation (IR). To evaluate our techniques in a 

different GPP, we only need a translator from the specific GPP instructions to the IR. 

4) Although we provide a concrete example for the if-conversion technique (the 

language-processor pair C-MicroBlaze), we propose general transformation rules 

which can be applied to other language-processor combinations.  

5) Finally, in this thesis we consider two distinct Megablock implementations: a first one 

using custom designs obtained by a VHDL representation of a Megablock with the 

option to support pipelining (see Chapter 6, Section 6.4); and a second one considering 

a CGRA coprocessor, suitable for executing different Megablocks (see Appendix A).  

In order to improve performance, we present a technique for pipelining Megablocks. The 

technique simplifies the creation of a pipelined version of a loop by taking advantage of the 

characteristics of the Megablock (e.g., the loop contains only one path). It also presents new 

ideas, such as avoiding the implementation of an epilog by using atomic loop iterations, or 

delay the stores to the end of the iteration to avoid output dependencies and simplify the 

implementation of atomic iterations. 

The analysis of the related work shows that dynamic partitioning can be useful in 

embedded systems. Although it is unlikely that an approach for automatic optimization of 

general computations will have better results than a handcrafted solution, the improvements 

achieved by dynamic partitioning can be enough to allow applications to generally take 

advantage of the existence of reconfigurable hardware in embedded computing systems, as 

mapping critical sections by hand for each application and device is too costly to be widely 

used. 

Warp [13], the work we believe closest to our approach (e.g., uses loops as detection unit), 

reports an average speedup of 6.3× over a set of 15 benchmarks. CCA [91] and DIM [14] 

report a speedup of 2.3× and 2.5×, respectively. A comparison with similar benchmarks 
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indicate that we were able to achieve results on par with those found in literature, thanks to 

techniques such as inner loop unrolling and loop pipelining. 

Our evaluations consider a RPU coupled to a soft-core microprocessor and the techniques 

proposed in this thesis (e.g., graph transformations, loop pipelining). When using the 

complete set of 66 benchmarks and the baseline case with the default RPU architecture (see 

Chapter 6, Section 6.3.1), for the innerloops case we achieve speedups from 0.5× to 4.8×, 

with an average speedup of 1.7× (or 1.4×, when using the geometric mean). When activating 

unrolling of inner loops, we achieve speedups from 0.4× to 6.4×, with an average speedup of 

2.2× (or 1.6×, when using the geometric mean). After applying if-conversion and graph 

transformation techniques, the average speedups increase slightly to 1.8× and 2.4× when 

using the arithmetic mean, and 1.6× and 2.1× when using the geometric mean, for the 

innerloops and unrolled cases respectively.  

We could apply the loop pipelining technique to 61 of the 66 benchmarks in the set. 

Considering this subset of 61 benchmarks and loop pipelining with overlapping schedule, for 

the innerloops case we achieve speedups from 0.2× to 28.5×, with an average speedup of 3.1× 

(or 1.8×, when using the geometric mean). When activating unrolling of inner loops, we 

achieve speedups from 0.2× to 32×, with an average speedup of 5.6× (or 3×, when using the 

geometric mean). 

Furthermore, we have implemented a prototype system for dynamic partitioning, based on 

an FPGA board (see Appendix A). The prototype is fully functional and runtime 

reconfigurable, and is capable of transparently moving computations from a GPP to a RPU 

without changing the executable binary. Although the prototype results were contaminated by 

high memory access latencies, we estimate reasonable speedups when the CPU directly 

accesses data stored in local memories, and with the current type of coupling, the system is 

easily adaptable to other CPUs. These results clearly show a strong evidence of the 

importance of the techniques proposed in this thesis. 

7.1 Future Work 

In this thesis we deeply explored the Megablock. However, there is room to justify further 

research, either with the proposed version of the Megablock, or with a new, extended version. 

For instance, the address conflicts which can appear when using the Single Address 

Identification (SAI) method (Chapter 5, Section 5.4) usually indicate different paths of the 
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same loop. This can be an opportunity for a new loop structure, which supports several paths 

found during runtime; or we can do Megablock merging and automatically create a single 

Megablock out of Megablocks with the same start address, by using if-conversion techniques. 

The detection method, together with the representation, can be extended to detect which 

sections of a Megablock correspond to an inner loop. With this information, it can be possible 

to reroll inner loops which are too big to fit the target hardware; more importantly, it would be 

a step forward for supporting inner loops with a variable number of iterations. Currently, if 

loop unrolling is enabled, each different iteration count of unrolled inner loops is detected as a 

distinct Megablock. 

The transformations that can be used over the Intermediate Representation can be further 

explored. We can use transformations that, in addition to the reduction of the number of 

operations or the critical path length, also focus other aspects, such as increasing ILP [26]. 

Transformations can be also used to tailor the Megablock to specific units in the target 

architecture; to evaluate whether some inputs of a Megablock are constant through the entire 

loop, and specialize the Megablock according to those constants. Merging Megablocks can 

enable further transformations. For instance, the gcc compiler for the Xilinx MicroBlaze soft-

core processor includes branch instructions in the code to convert 32-bit to 64-bit integer 

values. This could be detected and simplified, removing one of the paths of a merged 

Megablock. 

As expected, memory accesses were a bottleneck in many programs and future work 

should consider memory analysis techniques, such as alias analysis. Alias analysis can 

determine if two memory operations refer to the same location (address). This enables 

transformations such as elimination of redundant loads [130] or scalar replacement, which 

are very effective in the presence of code inserted by the compiler for register spilling (i.e., 

when due to register pressure, temporary variables are stored in memory). Alternatively, we 

may be able to analyze and deal less conservatively with data-dependences in order to 

increase the parallelism degree. Alias analysis is a well know optimization, but its application 

is limited when used in static compilers [131] due to memory address ambiguity. Since some 

of the memory addresses that are ambiguous at compile time can be resolved at runtime, 

applying this optimization dynamically can open new opportunities. 

The use of source-to-source transformations to implement if-conversion presents a way to 

do hardware/software co-design where instead of using custom software compilation tools, 

new programming languages or language extensions, it is possible to write plain code in the 



139 

 

target language in a suitable way for the hardware, without having to spend time in low-level 

system design details such as the communication between the processor and the coprocessor. 

Programs can be rewritten in the same target source code to better fit Megablock detection 

and/or the mapping to the coprocessor. One possible research avenue is the use of multiple 

binaries for the same function and to opt dynamically to the more suitable binary.  

Runtime identification of certain computation patterns may allow further improvements 

and/or the resolution to apply a certain optimization technique. One example would be the 

identification that the computations being executed are related to loads from a memory region 

followed by computations and then storing to a distinct, not overlapping, memory region. This 

identification may allow more aggressive loop pipelining techniques. 

The mapping process can benefit from the use of additional information provided by the 

compiler that generated the binaries, or by the analysis of the binaries prior to their execution. 

This additional information would be beneficial for most Megablock optimizations. As an 

example, the identification of the array variable associated with each load/store in the 

execution trace would help loop pipelining and the use of memory banks.  

A more advanced approach would use data speculation to obtain optimized Megablocks. 

During runtime, the system may track data ranges and specific values for the registers and 

based on the probabilities may optimize Megablocks considering a certain value in a register. 

This may be a viable option for Megablocks without side-effects as in this case roll-back is 

simplified. 
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Appendix A – SRA Implementation 

In the context of this thesis and of an MSc thesis concluded at FEUP (Faculty of 

Engineering of the University of Porto), it was developed a prototype system for dynamic 

partitioning based on an FPGA board [27, 126]. The system implements some of the ideas 

presented in this thesis and can automatically move, at runtime, loops from a MicroBlaze 

executable binary to a Reconfigurable Processing Unit (RPU). We use Megablocks as the 

partitioning unit. The Megablock detection is done offline, through cycle-accurate simulation 

of applications during a profile phase. The detected Megablocks are transformed into the IR, 

which is used to create an RPU tailored to the detected Megablocks. The RPU is an 

implementation of the SRA architecture (see Section 5.5.3), is runtime reconfigurable and can 

use several configurations during a single program execution. The implementation uses Single 

Address Identification (SAI – see Section 5.4) to identify the Megablocks detected during the 

profiling phase. In our current implementation, Detection and Translation (i.e., generation of 

the RPU) is done offline, while Identification and Replacement is done online, without 

changes in the executable binary. 

Figure A.1 shows the general architecture of the embedded system prototype, which 

consists of a GPP (a Xilinx MicroBlaze soft-core in this case) and a loosely coupled RPU, 

both connected to the system bus (in this case, a Processor Local Bus – PLB). To avoid 

modifications to the GPP, we use an Injector module which monitors the instructions 

executed by the GPP and communicates with the Reconfiguration Module (RM) to trigger the 

use of the RPU. The RM is responsible for the RPU reconfiguration. The program code 

executed by the GPP is in external memory (DDR2). The prototype was designed for an 

FPGA environment: instead of proposing a single all-purpose RPU, we developed a tool chain 

which generates the HDL description of an RPU tailored for the application to be run on the 

system. This step is done automatically. 

The target architecture was implemented on a Xilinx Spartan-6 LX45 FPGA [122] and a 

Digilent Atlys board [132] was used to run the examples. 
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Figure A.1. System Architecture (source: [27]). 

Figure A.2 presents the main components of the RPU, and Figure A.3 illustrates a possible 

array of FUs of an RPU. The RPU uses a peripheral bus interface unit to feed operands and 

retrieve results through memory mapped registers. The array of FUs contains all the blocks 

necessary to execute the previously detected Megablocks. The array of FUs is organized in 

rows with variable number of single-operation FUs. If an operation has a constant input, the 

RPU generation process tailors the FU to that input (e.g., bra FU in Figure A.3). The 

implementation supports arithmetic and logic operations with integers, including carry 

operations. Crossbar connections are used between adjacent rows, and are runtime 

reconfigurable, allowing the use of multiple Megablocks during the execution of a program. 

Connections spanning more than one row are established by pass-through FUs (pass FUs in 

Figure A.3). RPU configuration is performed by writing to configuration registers. These 

registers control the routing of the operands through the RPU and indicate which exit 

conditions should be active. 

 

Figure A.2. RPU Architecture (source: [27]). 

The RPU was specifically designed to run loops with one path and multiple-exits, such as 

Megablocks. The number of iterations of the loop does not need to be known before 

execution: the RPU keeps track of the exits points (e.g., bne FU in Figure A.3) of the 

Megablock and signals when an exit occurs (via a status register). When this happens the 
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current iteration is discarded, and execution resumes in the GPP at the beginning of the 

iteration. In the current version of the RPU, all operations complete within one clock cycle 

and each iteration takes as many clock cycles as the number of rows (depth) of the RPU. 

 

Figure A.3. Array of FUs (source: [27]). 

Figure A.4 shows the architecture of the PLB Injector, responsible for interfacing the GPP 

with the rest of the system, as well as for starting the reconfiguration process. Each RPU 

configuration is associated to a single instruction address. 

 

Figure A.4. PLB Injector Architecture (source: [27]). 

The Injector monitors the instruction addresses placed on the bus by the GPP until it sees 

the start of a Megablock. The Injector then stalls the execution of the GPP while 

reconfiguration is occurring and communicates the Megablock ID to the RM. After 
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GPP. The instructions will cause the GPP to branch to a memory position containing a 
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previously prepared Communication Routine (CR). By executing it, the GPP copies the 

contents from its register file to the appropriate input registers of the RPU. When the RPU 

execution ends, the GPP completes the CR by retrieving the values from the output registers 

of the RPU and resumes execution of the program code. This way, we can change the 

execution flow of the GPP without overwriting the original instructions of the program, nor 

interfering with the original software tool chain. 

We developed a tool suite to extract the Megablocks, map them to the RPU, and generate 

the configuration bits. The input of the tool is the executable file (i.e., the ELF file). The tool 

suite uses a cycle-accurate simulator of the MicroBlaze to monitor execution traces. The 

detected Megablocks are then processed by two tools: one generates Verilog descriptions for 

the RPU and the Injector, and the other generates the CRs for the GPP. The Verilog 

generation tool parses Megablock information, determines FU sharing across graphs, assigns 

FUs to rows, adds pass-through units, and generates files containing the placement of FUs. 

FUs are shared between different Megablocks, since at any given time there is only one 

Megablock executing in the RPU. The tool also generates routing information to be used at 

runtime (configuration of the inter-row switches), as well as the data required for Megablock 

Identification. The generated RPU is tailored to a specific set of Megablocks; switching 

between members of this set is accomplished by configuring the inter-row switches. Input 

values in the GPP’s register file, needed at runtime for Megablock execution, are transmitted 

to the RPU by executing the CRs on the GPP. 

Figure A.5 presents speedups for two scenarios. In the first one, referred as DDR case, 

results are obtained from execution on the FPGA and running the kernels from DDR memory. 

The execution times were measured using timers. The second set of results (BRAM case) was 

obtained by estimation, considering that the programs are stored in internal memory 

(BRAMs). Results include all communication overheads. We present values for a set of 6 

benchmarks, a weighted average of the set and a synthetic benchmark which combines the 6 

benchmarks (merge-all). 

In the DDR scenario, the MicroBlaze has a 23 cycle penalty for each instruction it 

executes. Most of the achieved speedup comes from avoiding execution of instructions in the 

GPP and executing operations on the RPU instead. However, for each call to the RPU, the 

GPP executes a CR which passes the values to the RPU through the bus. Since the CRs are in 

DDR, they also incur that penalty. The DDR access latency is the main contributor to the very 
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high overhead of this scenario (approximately 92% of the total execution time, on most 

cases). 

 

Figure A.5. Speedups for DDR and BRAM scenario (source [27]). 

The situation is aggravated by the relatively low number of instructions moved by 

Megablock call (around 200 instructions executed per loop, in most cases). The overhead 

includes the identification of the Megablock, configuration of the RPU and execution of the 

CR. Since the RM fetches instructions from local memories, a large part of the overhead 

comes from executing the CRs in the GPP afterwards. The speedups measured for the DDR 

scenario include all overheads and range from 3.9× to 18.2×. 

The BRAM scenario is the best possible case for the MicroBlaze processor regarding 

performance. When considering the BRAM scenario, the speedups and the overheads are 

significantly reduced, as there is no longer a high penalty for fetching instructions from 

memory (and as a consequence, the MicroBlaze executes the program faster). We used a 

cycle-accurate MicroBlaze simulator to calculate the execution time on the GPP. We 

considered the same overheads of the DDR scenario. We estimated the execution time for 

CRs considering an average of 1.18 cycles per executed instruction, and added a PLB latency 

of 9 cycles to write/read operands/results to/from the RPU. RPU execution cycles were 

calculated by multiplying the RPU’s depth and the number of iterations. We estimate 

speedups between 1.03× and 2.01× (including all overheads). 

In both scenarios the speedup of the synthetic benchmark merge-all is lower than the 

speedup of the weighted average. This is mostly due to the overhead of RPU reconfiguration, 

which only happens in the merge-all case. 

Table A.1 characterizes the FPGA implementation of the RPUs. The maximum clock 

frequencies of the RPUs for individual benchmarks ranged from 85 to 139MHz, which is 
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above the clock frequency of the MicroBlaze. Individual RPUs do not use more than 9% 

(2369) of the LUTs and 2% (1170) of the FFs. The merge-all RPU uses about 55% of the 

LUTs and 27% of the FFs that would be needed if the RPU was generated with no sharing of 

FUs. 

 

Kernels 
FPGA Implementation 

LUTs FFs 
Max. 

Freq.(MHz)  
count 1433 926 99.30 
even_ones 2331 1153 132.83 
fibonacci 2369 1170 121.56 
hamming 1739 1086 138.08 
pop_cnt 1758 1058 137.97 
reverse 1780 1072 139.06 
merge-all 6325 1719 85.19 

Table A.1. RPU FPGA Implementation 
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Appendix B – Additional Results 

In Chapter 6 we presented several figures with results which were calculated using 

the arithmetic mean. In this Appendix we present another version of the same figures, 

which use the geometric mean to calculate the average values. 

B-1 Baseline Geometric Means 

 

 

a) b) 

Figure B.1. Average a) speedup and b) IPC in the baseline case when varying the maximum 

number of load/store units (geometric mean). 

 

 

a) b) 

Figure B.2. Average a) speedup and b) IPC in the baseline when varying the maximum number 

of arithmetic/logic units (geometric mean). 
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Figure B.3. Average speedup in the baseline case when varying the ration between the RPU and 

GPP clock (geometric mean). 

B-2 If -Conversion Geometric Means 

 

 

a) b) 

Figure B.4. Average a) speedup and b) IPC for adapted code when varying the maximum 

number of load/store units (geometric mean). 
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Figure B.5. Average a) speedup and b) IPC for adapted code when varying the maximum 

number of arithmetic/logic units (geometric mean). 
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Figure B.6. Average speedup for adapted code when varying the ration between the RPU and 

GPP clock (geometric mean). 

B-3 Pipelining (Sequential Schedule) Geometric Means 

 

 

a) b) 

Figure B.7. Average a) speedup and b) IPC for adapted code when varying the maximum 

number of load/store units (geometric mean). 

 

 

a) b) 

Figure B.8. Average a) speedup and b) IPC for adapted code when varying the maximum 

number of arithmetic/logic units (geometric mean). 

0

0.5

1

1.5

2

2.5

3

3.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
p
e
e
d
u
p

RPU/GPP clock ratio

ifs (adapted) ifs-unrolled (adapted) ifs ifs-unrolled

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 ∞

S
p
e
e
d
u
p

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 ∞

IP
C

Max. load/store units per line

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

S
p
e
e
d
u
p

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

IP
C

Max. arithmetic/logic units per line

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)



160 

 

 

Figure B.9. Average speedup for adapted code when varying the ration between the RPU and 

GPP clock (geometric mean). 

B-4 Pipelining (Overlapping Schedule) Geometric Means 

 

 

a) b) 

Figure B.10. Average a) speedup and b) IPC for adapted code when varying the maximum 

number of load/store units (geometric mean). 

 

 

a) b) 

Figure B.11. Average a) speedup and b) IPC for adapted code when varying the maximum 

number of arithmetic/logic units (geometric mean). 
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Figure B.12. Average speedup for adapted code when varying the ration between the RPU and 

GPP clock (geometric mean). 
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Appendix C – Tools 

We developed a number of software tools to evaluate and validate the techniques proposed 

in this thesis. The tools are available online [119]. We include below screenshots of the most 

relevant software tools developed in the context of this thesis: Megablock Extraction (see 

Figure B.9), Megablock Estimation (see Figure B.9), VHDL for Megablocks (see Figure B.9) 

and VHDL for Megablock Detector (see Figure C.4). 

 

 

a) b) 

Figure C.1. Options for program Megablock Extractor. 



164 

 

 

a) 

 

b) 

Figure C.2. Options for program Megablock Estimation. 
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Figure C.3. Options for program VHDL for Megablocks. 

 

 

Figure C.4. Options for program VHDL for Megablock Detector. 
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