

UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Mapping Runtime-Detected Loops from

Microprocessors to Reconfigurable Processing Units

João Carlos Viegas Martins Bispo

Supervisor: Doctor João Manuel Paiva Cardoso

Co-Supervisor: Doctor José Carlos Monteiro

Thesis approved in public session to obtain the PhD Degree in

Information Systems and Computer Engineering

Jury Final Classification

Pass with Merit

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor JOÃO MIGUEL LOBO FERNANDES

Doctor JOÃO MANUEL PAIVA CARDOSO

Doctor JOSÉ CARLOS ALVES PEREIRA MONTEIRO

Doctor CHRISTIAN PLESSL

Doctor NUNO FILIPE VALENTIM ROMA

2012

UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

Mapping Runtime-Detected Loops from

Microprocessors to Reconfigurable Processing Units

João Carlos Viegas Martins Bispo

Supervisor: Doctor João Manuel Paiva Cardoso

Co-Supervisor: Doctor José Carlos Monteiro

Thesis approved in public session to obtain the PhD Degree in

Information Systems and Computer Engineering

Jury Final Classification

Pass with Merit

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor JOÃO MIGUEL LOBO FERNANDES, Professor Catedrático da Escola de Engenharia, da Universidade
do Minho;

Doctor JOÃO MANUEL PAIVA CARDOSO, Professor Associado da Faculdade de Engenharia da Universidade
do Porto;

Doctor JOSÉ CARLOS ALVES PEREIRA MONTEIRO, Professor Associado do Instituto Superior Técnico, da
Universidade Técnica de Lisboa;

Doctor CHRISTIAN PLESSL, Professor Auxiliar da Universidade de Paderborn, Alemanha;

Doctor NUNO FILIPE VALENTIM ROMA, Professor Auxiliar do Instituto Superior Técnico, da Universidade
Técnica de Lisboa.

Funding Institutions

FCT – Fundação para a Ciência e a Tecnologia

2012

iii

Resumo

Os sistemas computacionais baseados em processadores (GPPs) podem ser estendidos

com co-processadores, unidades de processamento reconfiguráveis – RPUs, de modo a

melhorar características relacionadas com o desempenho (ex.: tempo de execução, consumo

de energia).

Técnicas tradicionais de particionamento hardware/software permitem-nos atingir esse

objectivo. No entanto, é comum o processo ser moroso, necessitar de conhecimentos

não-triviais sobre projecto de hardware digital, e o resultado final ficar muito dependente de

aspectos específicos da arquitectura alvo, dificultando a portabilidade da solução para outros

sistemas, mesmo que façam parte da mesma família de dispositivos.

Pretende-se com esta tese propor técnicas inovadoras que permitam o particionamento

dinâmico de aplicações, ao nível da representação binária. O método aborda a migração

automática de código em tempo de execução, do processador para o co-processador. A

migração é baseada no Megablock, um novo tipo de loop, criado tendo em mente as

características do particionamento dinâmico.

Neste trabalho são apresentadas técnicas e algoritmos que permitem a detecção,

identificação, implementação e melhoramento de Megablocks, assim como um estudo

aprofundado do uso do Megablock como unidade de detecção, sobre um conjunto abrangente

de aplicações de referência.

As técnicas propostas para o melhoramento do desempenho incluem o desenrolamento de

loops internos e o pipelining de Megablocks. Experiências que consideram estas técnicas e

realizadas sobre um conjunto de 61 casos de estudo de referência revelam uma aceleração

média de 5,6× (de 0,2× até 32×). Estes valores de aceleração consideram a execução completa

dos casos de estudo e incluem os custos de comunicação entre o GPP e o RPU.

v

Abstract

Typical embedded computing systems based on general purpose processors (GPPs) can be

extended with coprocessors, such as Reconfigurable Processing Units – RPUs, to improve

performance characteristics such as execution time and/or energy consumption. A common

step needed for mapping computations to these systems is the use of traditional

hardware/software co-design. However, this step is usually time-consuming, non-trivial

knowledge about digital system design is required, and the resultant partitioning is typically

tied to the system architecture being considered. This prevents the portability of

hardware/solutions, as well as performance portability between different embedded

computing devices.

This thesis proposes novel techniques for dynamically partitioning applications at the

binary level. The approach addresses the automatic migration of computations during

runtime, from a GPP to an RPU acting as its coprocessor. The proposed techniques focus on

the identification and mapping of a novel kind of loop, named Megablock, to an RPU. The

Megablock was designed to be identified during runtime and to be a bridge between the

sequential code of the GPP and the configuration of an RPU. The work presented shows

methods and algorithms for the detection, identification, implementation, and optimization of

Megablocks, as well as an extensive study of the impact of using the Megablock as a

detection unit over a comprehensive set of benchmarks.

The proposed techniques for optimization of Megablocks include unrolling of inner loops

and pipelining of Megablocks. Experiments considering a coarse-grained reconfigurable array

as RPU, coupled to a soft-core microprocessor and using the techniques proposed in this

thesis, reveal average overall execution speedups, including all communication overheads, of

5.6× (from 0.2× to 32×) over the software execution, when considering a set of 61 integer

benchmarks.

Keywords: Dynamic Partitioning, Reconfigurable Computing, Loop Pipelining,

Heterogeneous Architectures, Runtime Reconfiguration, Binary Translation, FPGA,

Instruction Trace, Megablock, Embedded Systems

vii

Acknowledgments

First and foremost, I would like to thank my advisor, João Manuel Paiva Cardoso, for

taking me as his student, for all the time he spent around my work and for allowing me to do

most of the work far away from his lab. I would also like to thank my co-advisor, Professor

José Carlos Monteiro, for having accepted to co-supervise my work.

Also very important to this thesis was Nuno Paulino, for implementing in a system

prototype some of the ideas of this thesis. The many emails where we exchanged ideas were

invaluable; João Canas Ferreira, Nuno’s advisor, for believing in the work we were doing;

Jani Negrier for sharing the hardships of the PhD; Ricardo Jeremias, Tânia Lopes and Ana

Pereira, for the continuous support during the thesis, and in particular the madness that is the

final sprint; my parents, Dulce Bispo e Carlos Viegas, for the amazing support they have

always given, and to my sister, Sofia Bispo, who has always been there.

However, this work would not have been possible without the support of the many people

I have met during the several years that took this PhD, and they also deserve a mention. I

want to thank Adriano Sanches, which took the PhD at the same time as me and under the

same advisor, for the events we have shared; my colleagues from Oporto lab, Ali Azarian,

Ricardo Nobre, Tiago Carvalho; André C. Santos from Lisbon; Carlo Galuzzi from Delft, for

providing feedback on the mathematical formalisms of the Megablock; Aldric Negrier, for

lending me “his” lab in Algarve; Ana Moreira, for helping me getting on track on one of those

difficult PhD moments; Ricardo Avó, for keeping me updated.

I want to thank the many interesting people I have met in conferences, which made the

experience much more interesting and worthwhile, such as (but not limited to) Bryan Olivier,

Christian Plessl, Christian de Schryver, Diana Goehringer, Dirk Koch, Eduardo Marques,

Eduardo de la Torre, Glen Gibb, Jing Yan, Juan C. Peña, Kazuei Hironaka, Lee Ping, Michael

Hübner, Nabela Koob, Nelson Blanco, Ricardo Menotti, Ricardo dos Santos Ferreira, Rui

Policarpo, Viktor Prasanna, Yale Patt, and many others.

I thank the support given by Fundação para a Ciência e Tecnologia (FCT), which provided

a doctorate scholarship (SFRH /BD/36735/2007) for the duration of the PhD.

ix

Table of Contents

Resumo .. iii

Abstract ... v

Acknowledgments .. vii

Table of Contents... ix

Index of Figures ... xiii

Index of Tables ... xvii

Glossary of Terms ... xix

1 Introduction ... 1

1.1 Hardware/Software Co-Design .. 1

1.2 Dynamic Partitioning ... 2

1.3 Thesis Statement and Main Contributions ... 4

1.4 Organization ... 4

2 Background .. 7

2.1 General Purpose Processors and Execution Flow .. 7

2.2 Data Hazards .. 8

2.3 Coprocessors .. 8

2.4 Coprocessor Tradeoffs ... 9

2.5 Reconfigurable Processing Units ... 10

2.5.1 FPGAs ... 12

2.5.2 CGRAs... 13

2.6 Dynamic Compilation .. 14

2.7 Summary .. 17

3 Related Work ... 19

x

3.1 Binary Translation ... 19

3.2 RPU Architectures ... 20

3.3 Dynamic Partitioning Approaches ... 21

3.3.1 WARP .. 21

3.3.2 CCA ... 27

3.3.3 DIM ... 32

3.3.4 Overview ... 35

3.4 Summary .. 38

4 The Megablock .. 39

4.1 Motivation .. 39

4.2 Megablock Definition .. 42

4.3 Megablock Detection ... 44

4.4 Megablock Intermediate Representation ... 47

4.5 Adapting Source Code to Megablock Detection ... 50

4.5.1 General Definition of the Transformations ... 50

4.5.2 C Transformations Targeting the MicroBlaze Processor 51

4.6 Summary .. 53

5 Transforming and Implementing Megablocks .. 55

5.1 Graph Transformations .. 55

5.1.1 Mapping MicroBlaze Assembly to Graph IR .. 55

5.1.2 Constant Folding and Propagation .. 57

5.1.3 Identity Simplifications ... 58

5.1.4 Multiplication to Multiplexer .. 58

5.2 Hardware Module for Megablock Detection ... 58

5.3 Megablock Translation using the Graph IR ... 61

5.4 Megablock Identification ... 65

5.5 Architectures for Implementing Megablocks .. 67

xi

5.5.1 General 2D CGRA... 69

5.5.2 Specialized Array (SAr) .. 71

5.5.3 Specialized Reconfigurable Array (SRA) ... 72

5.5.4 Folded CGRA (1D CGRA) ... 73

5.6 Megablock Pipelining .. 74

5.6.1 Inter-Iteration Dependencies ... 75

5.6.2 Architecture for Pipelined Megablocks ... 78

5.6.3 Megablock Pipelining Algorithm .. 83

5.6.4 Hardware Support for Megablock Pipelining .. 86

5.7 Summary .. 88

6 Experimental Results ... 89

6.1 Experimental Setup .. 89

6.2 Megablock Coverage ... 92

6.3 Megablock Mapping .. 97

6.3.1 Baseline Results ... 98

6.3.2 If-Conversion ... 107

6.3.3 Graph Transformations .. 113

6.4 Hardware Module for Megablock Detection ... 116

6.5 Megablock Pipelining .. 118

6.6 Application Examples .. 127

6.6.1 3D Path Planning Application ... 127

6.6.2 Dynamic Partitioning on an Embedded Processor – fir 128

6.7 Summary .. 132

7 Conclusions ... 135

7.1 Future Work ... 137

8 References ... 141

Appendix A – SRA Implementation .. 151

xii

Appendix B – Additional Results ... 157

B-1 Baseline Geometric Means ... 157

B-2 If -Conversion Geometric Means .. 158

B-3 Pipelining (Sequential Schedule) Geometric Means .. 159

B-4 Pipelining (Overlapping Schedule) Geometric Means 160

Appendix C – Tools .. 163

About the Author .. 167

Index ... 169

xiii

Index of Figures

Figure 1.1. Block diagram of a typical target system which includes a RPU coprocessor acting
as an accelerator of the GPP. .. 2

Figure 2.1. Example trade-offs when using a coprocessor. ... 10

Figure 2.2. Possible two-dimensional structure for a reconfigurable fabric (source: [36]). FU
identifies Functional Units, MEM identifies local memories, and IOB identifies Input/Output
blocks. .. 11

Figure 2.3. Types of RPU coupling with respect to the host system. 12

Figure 2.4. Dynamic Hardware-Software Partitioning problem formulation. 16

Figure 3.1. Block Diagram for the WARP Processor (source: [13]). 22

Figure 3.2. Block Diagram for the W-FPGA (source: [13]). ... 23

Figure 3.3. Binary to Hardware Translation Flow (source: [13]). ... 24

Figure 3.4. CCA-Enabled Processor Block Diagram (source:[53]). .. 28

Figure 3.5. Example of a CCA Implementation (source:[53]). .. 28

Figure 3.6. Mapping a subgraph into CCA (source: [53]): in the left are shown a sequence of
instructions representing a subgraph code (top) and a CCA structure (bottom); in the right side
of the subgraph code are shown the steps performed by the mapping algorithm. 31

Figure 3.7. DIM Block Architecture and Configuration Example (source: [14]). 33

Figure 3.8. Dynamic translation in the DIM Architecture (source: [14]). 34

Figure 4.1. a) Upper bound for overall application speedup as a function of the coverage, and
b) ratio between SpeedupOverall and SpeedupHw as a function of the coverage. 41

Figure 4.2. Example of the CFG of an inner loop. ... 42

Figure 4.3. a) C code for a max function and b) the MicroBlaze assembly code for a
Megablock representing one of the possible execution paths. ... 44

Figure 4.4. Algorithm for detection of squares, up to a maximum size M. 45

Figure 4.5. Program execution partitioning according to basic blocks, fragments, and
Megablocks. ... 47

Figure 4.6. Types of nodes and possible connections in a Megablock graph. 48

Figure 4.7. A data connection between two operation nodes. .. 49

Figure 4.8. Examples of the target code subject to transformation: a) single if statement; b) if-
else statement; c) a chain of if-else statements with arbitrary size. ... 51

Figure 4.9. Equivalent code when applying if-conversion to a) single if statement; b) if-else
statement; c) a chain of if-else statements with arbitrary size. ... 51

xiv

Figure 4.10. How to calculate the term condition in C using a) plain C and b) inline assembly,
when targeting the MicroBlaze processor. ... 52

Figure 4.11. Applying if-conversion to a single if statement in C, when the mux operator is a)
a multiplication and b) a logical or. ... 52

Figure 5.1. Mul To Mux transformation: a) graph before the transformation is applied; b)
graph after the transformation. ... 58

Figure 5.2. Hardware solution for Megablock detection. .. 59

Figure 5.3. Diagram for the Megablock Detector. ... 60

Figure 5.4. Diagram for a hardware implementation of the Squares Detector. 61

Figure 5.5. Possible chain of steps in a Translation phase. ... 61

Figure 5.6. Algorithm for the function rearrangeGraph. .. 63

Figure 5.7. Algorithm for the function rearrangeNode. .. 64

Figure 5.8. Example of the function rearrangeNode ... 65

Figure 5.9. Routing algorithm in the Map step. ... 65

Figure 5.10. General system architectures for Megablock implementation. 68

Figure 5.11. General architecture for a 2D CGRA-based RPU which supports Megablocks. 70

Figure 5.12. Two possible SAr instances for two distinct Megablocks. 72

Figure 5.13. SRA instance for two hypothetical Megablocks. ... 73

Figure 5.14. General architecture for a Folded CGRA-based RPU which supports
Megablocks. ... 74

Figure 5.15. C code for a vecsum function. .. 76

Figure 5.16. Assembly instructions of the repeating pattern of a Megablock found in the trace
of vecsum running on a MicroBlaze processor, and their correspondent translation to
operations to be mapped to a CGRA. ... 76

Figure 5.17. Graph representation of the repeating pattern of the Megablock found when
executing vecsum. ... 77

Figure 5.18. General blocks for Megablock pipelined execution. ... 79

Figure 5.19. Execution of an LM with three stages. .. 79

Figure 5.20. Possible schedules for the modules of a pipelined RPU. 81

Figure 5.21. Execution using an overlapping schedule with an LM with 3 stages. 82

Figure 5.22. Algorithms for IM graph creation. ... 85

Figure 5.23. Input Module (IM) graph for a Megablock found in vecsum. 86

Figure 5.24. Loop Module (LM) schedule for a Megablock found in vecsum. 86

Figure 5.25. General architecture for a 2D CGRA-based RPU which supports Megablocks
and Megablock pipelining. ... 87

Figure 6.1. Average coverage of the complete set of benchmarks when applying Megablock
detection and varying several parameters. ... 93

xv

Figure 6.2. Megablock detection ratio in the complete set of benchmarks. Indicates the ratio
of benchmarks were valid Megablocks could be detected. .. 94

Figure 6.3. Individual coverage values in the main set of benchmarks, for Megablock
detection using the default setup and Backward Branch Loop Detection. 96

Figure 6.4. Upper-bound speedups in the baseline case for three scenarios: execution time of
the RPU is equal to Megablock CPL, execution time of the RPU is zero and execution time of
the RPU and communication delays are zero. .. 103

Figure 6.5. Average a) speedup and b) IPC when varying the maximum number of load/store
units per row. .. 104

Figure 6.6. Average a) speedup and b) IPC when varying the maximum number of
arithmetic/logic units per row. ... 104

Figure 6.7. Average speedup when varying the ratio between the RPU and GPP clock
frequencies. .. 106

Figure 6.8. Individual overall speedups for the baseline case, considering an RPU with a
maximum of 8 parallel FUs and 2 load/store operations per cycle. 107

Figure 6.9. Upper bound speedups after if-conversion a) when considering inner loops and b)
when unrolling inner loops. .. 112

Figure 6.10. Average a) speedup and b) IPC for adapted code when varying the maximum
number of load/store units per row. ... 112

Figure 6.11. Average a) speedup and b) IPC for adapted code when varying the maximum
number of arithmetic/logic units per row. .. 113

Figure 6.12. Average speedup for adapted code when varying the ratio between the RPU and
GPP clock. .. 113

Figure 6.13. Average a) speedup and b) IPC after graph transformations, when varying the
maximum number of load/store units per row ... 115

Figure 6.14. Average a) speedup and b) IPC after graph transformations, when varying the
maximum number of arithmetic/logic units per row. ... 116

Figure 6.15. Average speedup after graph transformations, when varying the ratio between
RPU and GPP clock frequencies. ... 116

Figure 6.16. LUTs, FFs and estimated maximum frequencies for Megablock Detector
hardware designs. ... 117

Figure 6.17. FPGA resources increase when using pipelining with overlapping schedule over
the non-pipelined implementation. ... 122

Figure 6.18. Average a) speedup and b) IPC after pipelining with overlapping schedule, when
varying the maximum number of load/store units per row. ... 124

Figure 6.19. Average a) speedup and b) IPC after pipelining with overlapping schedule, when
varying the maximum number of arithmetic/logic units per row. .. 124

Figure 6.20. Average speedup after pipelining with overlapping schedule, when varying the
ratio between RPU and GPP clock frequencies. .. 124

xvi

Figure 6.21. Individual overall speedups for a pipelined architecture with overlapping
schedule, considering a maximum of 8 parallel arithmetic/logic FUs and 2 load/store
operations per clock cycle. ... 125

Figure 6.22. C code for a fir function. .. 129

Figure 6.23. Assembly code and corresponding graph operations for the fir Megablock. 130

Figure A.1. System Architecture (source: [27]). .. 152

Figure A.2. RPU Architecture (source: [27]). .. 152

Figure A.3. Array of FUs (source: [27]). ... 153

Figure A.4. PLB Injector Architecture (source: [27]). ... 153

Figure A.5. Speedups for DDR and BRAM scenario (source [27]). 155

Figure B.1. Average a) speedup and b) IPC in the baseline case when varying the maximum
number of load/store units (geometric mean). ... 157

Figure B.2. Average a) speedup and b) IPC in the baseline when varying the maximum
number of arithmetic/logic units (geometric mean). .. 157

Figure B.3. Average speedup in the baseline case when varying the ration between the RPU
and GPP clock (geometric mean). .. 158

Figure B.4. Average a) speedup and b) IPC for adapted code when varying the maximum
number of load/store units (geometric mean). ... 158

Figure B.5. Average a) speedup and b) IPC for adapted code when varying the maximum
number of arithmetic/logic units (geometric mean). .. 158

Figure B.6. Average speedup for adapted code when varying the ration between the RPU and
GPP clock (geometric mean). ... 159

Figure B.7. Average a) speedup and b) IPC for adapted code when varying the maximum
number of load/store units (geometric mean). ... 159

Figure B.8. Average a) speedup and b) IPC for adapted code when varying the maximum
number of arithmetic/logic units (geometric mean). .. 159

Figure B.9. Average speedup for adapted code when varying the ration between the RPU and
GPP clock (geometric mean). ... 160

Figure B.10. Average a) speedup and b) IPC for adapted code when varying the maximum
number of load/store units (geometric mean). ... 160

Figure B.11. Average a) speedup and b) IPC for adapted code when varying the maximum
number of arithmetic/logic units (geometric mean). .. 160

Figure B.12. Average speedup for adapted code when varying the ration between the RPU
and GPP clock (geometric mean). .. 161

Figure C.1. Options for program Megablock Extractor. .. 163

Figure C.2. Options for program Megablock Estimation. .. 164

Figure C.3. Options for program VHDL for Megablocks. ... 165

Figure C.4. Options for program VHDL for Megablock Detector. 165

xvii

Index of Tables

Table 3.1. Summary of characteristics for the three representative approaches: Warp, CCA,
and DIM. .. 36

Table 5.1. Additional information acquired from the instructions in the Megablock sequence.
 .. 56

Table 5.2. Characteristics of the proposed Megablock identification methods: SAI and MSI.67

Table 5.3. Dependencies between the modules of a pipelined RPU. 80

Table 6.1. Characteristics of the benchmarks which form the set no-ifs. 90

Table 6.2. Characteristics of the benchmarks which form the set ifs. 91

Table 6.3. Megablock characteristics for the no-ifs set, only inner loops. 99

Table 6.4. Megablock characteristics for the ifs set, only inner loops. 100

Table 6.5. Megablock characteristics for the no-ifs set when applying unrolling. 101

Table 6.6. Megablock characteristics for the ifs set when applying unrolling. 101

Table 6.7. Cycle count and ratio of the ifs set, before and after if-conversion. 108

Table 6.8. Characteristics of the benchmarks which form the set ifs (adapted). 109

Table 6.9. Megablock characteristics for the ifs-adapted set, only inner loops. 110

Table 6.10. Megablock characteristics for the ifs-adapted set when applying unrolling. 111

Table 6.11. Decrease in the number of Megablock operations, for the unrolled no-ifs set
considering three transformations. ... 114

Table 6.12. Decrease in the number of Megablock operations, for the unrolled ifs-adapted set
considering three transformations. ... 114

Table 6.13. IPC when the Megablock for each benchmark is executed in several platforms.
 .. 120

Table 6.14. Megablock mapping characteristics on the non-pipelined architecture. 120

Table 6.15. Comparing a non-pipelined and a pipelined architecture with sequential
scheduling. .. 120

Table 6.16. Comparing a non-pipelined and a pipelined architecture with overlapping
scheduling. .. 121

Table 6.17. CPL comparison between baseline and pipelined with overlapping schedule. .. 126

Table 6.18. Characteristics for the execution of the application 3dpp. 128

Table 6.19. Execution times for several implementations of the pattern detector for
Megablocks. ... 131

Table 6.20. Average execution times in milliseconds of the Translation steps. 132

xviii

Table A.1. RPU FPGA Implementation ... 156

xix

Glossary of Terms

ALU Arithmetic Logic Unit. A digital circuit that performs

arithmetic and logical operations

BRAM Block-RAM. Configurable random access memory

module present in most Xilinx FPGAs.

CGRA Coarse-Grained Reconfigurable Array. A reconfigurable

array usually including ALUs as processing elements and

programmable at the word-level.

Contiguous Subsequence Subsequence formed by consecutive elements of a

sequence. The same as substring when the sequence of

elements forms a string.

Coverage Portion of GPP execution that will be replaced by

execution in an RPU, over the total execution when the

program runs only in the GPP.

CPL Critical Path Length. In the context of RPUs, the number

of clock cycles needed to complete the execution path

with the highest number of cycles (i.e., critical path).

CPU Central Processing Unit. The portion of a computer

system that carries out the instructions of a computer

program, to perform the basic arithmetical, logical, and

input/output operations of the system.

Critical Loop Loop region of a computer program where a high

proportion of executed instructions occur, or where most

time is spent during the program's execution.

xx

DHSP Dynamic Hardware-Software Partitioning. Technique

where during runtime, sections of a software-only

program are moved and executed in dedicated hardware

components.

Dynamic Partitioning Same as DHSP in the context of this thesis.

Executed Instructions

Threshold

Megablock detection parameter. If the number of

executed instructions in the processor corresponding to a

detected Megablock falls below the executed instructions

threshold the Megablock is ignored.

FF Flip-Flop. Circuit with two stable states which can be

used as a memory element to store state information. A

key component of modern FPGAs.

FPGA Field-Programmable Gate Array. Integrated circuit

designed to be configured after manufacturing. Usually

programmable at the bit-level.

Fragment Sequence of executed basic blocks which do not jump

backward.

FU Functional Unit. A digital circuit which can perform

operations and calculations. A more general form of the

ALU.

GPP General Purpose Processor. Specific term for a CPU

which is programmable through instructions and has been

designed to execute generic applications.

Hotspot Same as Critical Loop in the context of this thesis.

ILP Instruction-Level Parallelism. The parallelism associated

with the instructions and/or primitive operations that can

be performed simultaneously.

xxi

IM Input Module. Section in the architecture of a pipelined

Megablock responsible for generating the inputs for each

iteration.

Induction Variable Variable which value is increased or decreased by a fixed

amount on every iteration of a loop, or is a linear function

of another induction variable.

IPC Instructions Per Cycle. Term used to describe one aspect

of performance, the average number of instructions

executed per clock cycle.

IR Intermediate Representation. Data structure which

represents a program or part of a program in an abstract

way.

Kernel Same as Critical Loop in the context of this thesis.

LM Loop Module. Section in the architecture of a pipelined

Megablock responsible for executing the iterations of the

loop.

LOC Lines of Code. Software metric used to measure the size

of a software program by counting the number of lines in

the text of the program's source code.

LUT Look-Up Table. Hardware structure used to implement

Boolean logic functions in hardware, such as AND, OR

and XOR. A key component of modern FPGAs.

Maximum Pattern Size Megablock detection parameter. Maximum number of

pattern elements of a Megablock that can be detected.

Megablock Loop structure which represents a repeatable sequence of

instructions in the execution trace.

xxii

MSI Megablock Signature Identification. A Megablock

identification technique which relies on an individual

signature for each Megablock.

PLB Processor Local Bus. Bus structure provided by Xilinx to

develop system architectures in Xilinx FPGAs.

RPU Reconfigurable Processing Unit. A reconfigurable

hardware unit for dedicated computations.

SAI Single Address Identification. A Megablock identification

technique which relies on the address of a single

instruction.

SAr Specialized Array. An RPU implementation which

corresponds to a single Megablock.

SM Store Module. Section in the architecture of a pipelined

Megablock responsible for executing store operations

according to their original order.

SRA Specialized Reconfigurable Array. An RPU

implementation which supports several Megablocks and

which is runtime reconfigurable.

Subsequence Part of a sequence of elements, where element order is

maintained but consecutiveness is not enforced. E.g., bd is

a subsequence of abcde.

xxiii

Substring Subsequence formed by consecutive elements of a

sequence S of symbols (a string). E.g., bcd is a substring

of abcde.

Type of Pattern Unit Megablock detection parameter. The kind of pattern

element used for detection (e.g., instruction, basic block).

Unrolling of Inner Loops Megablock detection parameter. If enabled, gives priority

to Megablocks with more pattern elements, forming

Megablocks with unrolled inner loops. Otherwise, gives

priority to Megablocks whose pattern has less elements.

xxiv

1

1 Introduction

The challenging requirements of designing and implementing high-performance and

flexible embedded systems at low cost have made the use of field programmable gate arrays

(FPGAs) an attractive option [1]. These modern, high-capacity devices are being used as

platforms for implementing complete systems-on-chip and include one or more general

purpose processors (GPPs). Even as computation shifts to the multi-core paradigm, there is

still the need for acceleration of specific computation tasks [2, 3], e.g., by connecting

application-specific accelerators to the GPPs.

A flexible solution for the hardware accelerators is the use of Reconfigurable Processing

Units (RPUs) [4, 5]. Figure 1.1 illustrates the organization of a typical architecture coupling

an Reconfigurable Processing Unit (RPU) to the GPP. Many different possibilities can be

used to couple the two main components of this architecture [6]. In the target organization

illustrated, the RPU communicates with the GPP by direct connections and both have access

to the system memory (i.e., the RPU acts as a traditional coprocessor). However, it is usually

required a high design effort to implement those systems. The design-flow combines software

development and hardware design, the latter usually starting from a specification in a

hardware description language (HDL) such as Verilog [7], and thus requiring hardware design

expertise.

1.1 Hardware/Software Co-Design

Hardware/software co-design [8, 9] is a methodology for designing embedded systems

consisting of hardware and software components. An important part of hardware/software co-

design is hardware/software partitioning. It can be used to select and map the parts of the

application that will be executed in the GPP and in the RPU. It contains steps such as the

detection of computation-intensive sections in the application (also known as hotspots or

critical sections), mapping the computations to each of the components of the target

architecture (i.e., the software and the hardware components), and adapting the software

application (e.g., calls to special instructions are inserted in the application source code) to

2

use the hardware component. This requires the insertion of synchronization and data

communication primitives.

Figure 1.1. Block diagram of a typical target system which includes a RPU coprocessor acting as an

accelerator of the GPP.

Depending on the tools, the hardware/software process can range from mostly manual to

highly automated [10, 11]. For instance, and example of an automated approach is to use

high-level synthesis tools, such as Catapult C (from Mentor Graphics), which translate C code

to HDL [12]. This often requires rewriting the source code to fit the translator’s requirements

and limitations. Implementing the interface between the generated hardware and the software

is also necessary, a task which might require additional, manually-developed hardware, and

further source code modifications. In this scenario, the developer still needs non-trivial

knowledge on digital systems design, and adapting applications to use custom hardware is

done on an application-by-application basis.

There has been a continuous effort to automate the migration of computations from a GPP

to custom hardware. In a promising approach the partitioning is done over the binaries of the

application, while it executes on the processor [13, 14]. The computation is transparently

moved from the GPP to the coprocessor. We refer to this approach as Dynamic Hardware-

Software Partitioning (DHSP), or simply dynamic partitioning.

1.2 Dynamic Partitioning

Delaying partitioning until the application executes enables one to use information only

available at runtime. With this information it is possible, for instance, to partition the

application according to its current execution, enabling the implementation of more efficient

designs. Another possible application of dynamic partitioning is to improve hardware

GPP

RPU

Data

Instructions

3

portability between different systems, by discovery of the specific RPU that is being used by

the system at the time the application executes, and mapping the computation to that RPU.

Dynamic partitioning has its costs. As some of the partitioning steps are moved to

runtime, there is additional overhead to be considered. In addition, as execution time becomes

an important characteristic for the steps done online, it is necessary to adapt current

algorithms or to propose new algorithms considering a runtime scenario.

Dynamic partitioning is reminiscent of dynamic compilation (also known as Just-In-Time

– JIT – compilation). During JIT compilation, several compilation steps are delayed until the

execution of the program (most notably, the generation of machine code). The Java platform

[15] is probably the most popular example of dynamic compilation, and has been used with

success to write applications which can execute in a variety of devices (e.g., smartphones) and

across several operating systems (e.g., Windows, MacOs, Linux). The HotSpot [16] is an

example of a Java Virtual Machine which uses dynamic compilation to bridge the gap in

performance between a compiled and an interpreted language [17].

Performing compilation directly from the program binary is known as binary translation

[18]. It has been successfully used to transparently execute programs in platforms not

compatible with the ones they were originally compiled for. For instance, Pentium

microprocessors use hardware binary translation to translate instructions of the old x86 ISA to

the new ISA of the microprocessor [19]. The Rosetta [20] is a binary translation software used

by Apple when it moved the Macintosh from PowerPC to Intel processors, to allow previous

applications to run in the system without modification. Other example is the Crusoe [21]

microprocessor, which performs binary translation dynamically in hardware. While in the first

two cases binary translation was used to improve compatibility, possibly at the cost of

performance, the Crusoe tries to achieve similar performance with a lower thermal envelope.

It translates and executes binaries written in the Intel x86 ISA to a microprocessor which has

a substantially different architecture, designed to be more power efficient.

In this thesis we propose novel techniques for DHSP in the context of embedded

computing systems. In particular, we propose a novel kind of loop, the Megablock, designed

for runtime detection and for adapting sequential code to parallel computation models. The

proposed techniques focus on the Megablock, and the work presented here shows methods

and algorithms for the detection, identification, implementation, and optimization of

Megablocks (e.g., inner loop unrolling, pipelining of Megablocks). We also present an

4

extensive study of the impact of using the Megablock as a partitioning unit over a

comprehensive set of benchmarks.

1.3 Thesis Statement and Main Contributions

Thesis Statement: We can build a system which automatically moves loops, originally

meant to be run on a general purpose processor, to a reconfigurable fabric, in order to

improve the execution of the program according to some criteria (e.g., execution time, energy

consumption). The loops are moved while the unchanged program binary executes in the

processor, and by using adequate structures (i.e., the Megablock) and algorithms, it is

possible to consider techniques (such as loop pipelining) not previously considered for

dynamic mapping computations to reconfigurable fabrics.

The focus of this thesis is on the use of DHSP in embedded systems. The main

contributions of this thesis are:

• It proposes the Megablock, a repetitive pattern of instructions that represents a path in

the execution flow.

• An algorithm for detection of Megablocks based on a pattern-matching technique

which can be fully agnostic to the instruction format of the target GPP;

• A graph-based, architecture independent, intermediate representation for Megablocks;

• A scheme for applying an if-conversion technique to transform code such that it can

expose more useful Megablocks when dealing with control-intensive applications;

• Proof-of-concept implementations for several of the proposed ideas and evaluation

using an FPGA board;

• A technique which pipelines the iterations of Megablocks in hardware;

• An extensive study of the impact of the Megablock over a comprehensive set of

integer benchmarks from embedded computing;

The results of this thesis have contributed to a number of publications [22-28].

1.4 Organization

The remainder of this thesis is organized as follows:

Chapter 2 introduces the concepts needed for the subsequent chapters of this thesis. The

covered subjects include compilation in general (both static and dynamic), the

processor/coprocessor paradigm, and reconfigurable hardware.

5

Chapter 3 introduces several research efforts in the fields related to our approach, such as

approaches based on traces, runtime reconfiguration, and binary translation. Furthermore, we

describe in detail three relevant approaches which focus on dynamic partitioning for

reconfigurable architectures. All the three approaches transparently move instructions being

executed in a General Purpose Processor (GPP) to reconfigurable hardware, bearing in mind

embedded systems as a target.

Chapter 4 describes the Megablock, a repetitive pattern of executed instructions found in

the trace of a program. In this chapter we propose the Megablock as a partitioning unit for

moving sequential code to the parallel computing model provided by RPUs and compare

with the partitioning units used in other works. The chapter also presents an algorithm for

detection of Megablocks, proposes an Intermediate Representation (IR), and introduces

source-to-source transformations to detect additional Megablocks.

Chapter 5 presents practical aspects related to the implementation of Megablocks. We

explain how to build the Intermediate Representation (IR) introduced in Chapter 4, as well as

introduce a set of transformations which can be applied over the IR. Although the detection of

Megablocks can be done offline, during a profile phase, we still need a method to identify

these previously detected Megablocks at runtime, when the application executes. In this

chapter we propose two methods for runtime Megablock identification. Finally, we present

several architecture models capable of implementing Megablocks, and explain how we can

augment a Megablock-enabled architecture to support pipelining of Megablocks.

Chapter 6 presents extensive results using the techniques introduced in previous chapters,

over a comprehensive set of benchmarks. We present results about Megablock coverage,

consider several scenarios regarding Megablock mapping (i.e., baseline results, if-conversion,

graph transformations), and show results for pipelined Megablocks.

Chapter 7 concludes the thesis and presents ideas on how to expand the current work.

Finally, we include three appendixes that present a proof-of-concept used to evaluate some

of the techniques presented in this thesis, additional results, and a brief mention about the

most important software tools developed for this thesis.

7

2 Background

The purpose of this chapter is to provide the core concepts needed to understand Dynamic

Hardware-Software Partitioning (DHSP). The covered subjects include compilation in general

(both static and dynamic), the processor/coprocessor paradigm, and reconfigurable hardware.

2.1 General Purpose Processors and Execution Flow

General Purpose Processors (GPPs) have been the central components of computing for

the past decades [29]. High-level languages and compilers make GPPs relatively easy to

program and many of today’s applications run on GPPs.

Each GPP has an associated Instruction Set Architecture (ISA) [29], which defines the

programming part of the GPP: data type support, allowed instructions, available registers, etc.

The binary representation of the set of instructions directly supported by a GPP is called the

machine language, and the human-readable version of the machine language is called the

assembly language.

A program is formed by a sequence of instructions, laid out sequentially, and uniquely

identified by an instruction address. When a program runs on a GPP, each executed

instruction can be viewed as a step given by the program. By default, the GPP executes

instructions in sequence. However, certain instructions can change the flow by instructing the

GPP that the next instruction to be executed is several instructions ahead, or several

instructions before in the sequence. The change of the execution flow is typically

implemented by jump/branch instructions, which are commonly referred to as control-flow

instructions.

There can be conditional or unconditional branches. Jump instructions (usually referred as

unconditional branches) always change the execution flow. Conditional branches depend on a

condition to change the execution flow (e.g., jump if the value of a certain register is zero).

Conditional branch instructions define branching points in the code. A branch is a sequence of

instructions that is executed if the condition of the branch instruction is met. Those branch

instructions represent a point where the execution flow will take one of two paths (or more, if

the destination address when the branch is taken is a variable). To make a distinction between

8

a jump/branch to an address after the jump/branch instruction and a jump/branch to an address

before the jump/branch instruction, the former is called a forward branch, while the latter is

called a backward branch.

The sequence of instructions executed by the GPP during an execution of a program is

called a program trace. The trace represents all the paths and choices of a particular program

execution. Note that different executions can generate different traces, depending, for

instance, on the branches taken during the program execution.

Associated to jumps/branches is the basic block [30], a block of code with a single entry-

point and a single exit-point. It usually corresponds to the sequence of instructions between

the instruction executed after a branch, and the next jump/branch instruction.

2.2 Data Hazards

Most GPPs follow the Von Neumann model [31], which assumes that instructions are

executed sequentially, typically following the order indicated by the program/compiler.

However, one can improve performance by reordering some instructions. When reordering

instructions, it is fundamental to maintain the original functionality of the program. An hazard

happens whenever there is a data dependence between instructions, and a reordering of those

instructions changes the correct behavior of the program [29]. Consider two instructions, A

and B, where A executes before B. There are three possible data hazards:

RAW (read after write): When instruction B fetches a result which is written by

instruction A, but instruction A has not completed yet, making B read a (possibly) wrong

value.

WAW (write after write): When instruction A and instruction B write a result to the same

place, and the last instruction writing the result is A, instead of B.

WAR (write after read): Instruction A reads a value which is latter overwritten by

instruction B. Hazard happens when instruction B overwrites the value before instruction A

could read it.

2.3 Coprocessors

When GPPs are not able to meet certain non-functional requirements (e.g., execution time,

power dissipation, energy consumption), an effective way to improve the GPP system is to

extend the GPP with a customized hardware unit, in the form of a coprocessor [8, 32].

9

Coprocessors can perform faster than a GPP for specific tasks because, among other things,

they allow for more parallelism, by providing additional computational units not present in a

general case; alternative computation models which can be more efficient for certain tasks

(e.g., data-streaming); spatial computing, by replacing sequences of instructions (temporal

computing) by direct connections between components, diminishing the instruction overhead

related to fetch-decode stages [33].

However, developing and testing hardware is significantly harder than software. When

using target architectures consisting of a GPP coupled to a hardware unit (e.g., acting as a

coprocessor) one identifies which program sections are most frequently executed and then

migrates those portions to the hardware unit. This is known as hardware/software co-design

[8, 9]. This approach is usually viable as most applications follow the 90-10 rule of thumb:

90% of the execution time is spent on 10% of the program code [29], often found in small

groups of instructions which are executed in loop for many iterations. Those code sections are

known by various names, e.g., critical loops, kernels, hotspots. Most hardware/software co-

design approaches start by identifying the loops of the programs.

2.4 Coprocessor Tradeoffs

Consider a computing system with a GPP running a program, and that at some point the

system is at state A. After running the program for a while, the system arrives at state B,

changing several elements of the system, e.g., the values in the registers of the GPP, the

contents of the main memory. As a general case, we consider that the objective of a

coprocessor is to help the processor going from state A to state B, while allowing for a trade-

off between one or more parameters. It should be noted that it may not be necessary to arrive

exactly at the same state B, some of the values can be temporary values which will not be

used after. However, if the state is the same, we can guarantee that if the execution continues

on the processor, it will be correct. State can have different meanings: for a simple embedded

application it can refer to the actual state of the system: the values in the registers of the

processor, of the memory at each address, etc. In a more complex system with virtual address

space and concurrent processes, the state can, for instance, refer to the virtual state of a single

process.

Figure 2.1 shows some trade-offs we can achieve when using a coprocessor. The figure

represents two common parameters, execution time and consumed energy. In case a), the GPP

10

executes the program and takes the system from a state A to a state B, consuming a certain

amount of energy and time. Case b) consumes about the same energy, but takes less time to

execute, while case c) takes the same time to execute while reducing the energy consumption.

Both arrive at the same state B.

Figure 2.1. Example trade-offs when using a coprocessor.

When we go from a system state A to a system state B with the help of a coprocessor,

tackling the problem at the same level of the considered states may provide a more fine-

grained control of the problem. This is the case when considering hardware/software co-

design: if, when working with an embedded application where the considered state is

composed by the contents of the processor registers and of the memory, the partitioning was

done at the level of the assembly, instead of going up to the source code; if, when working

with a Java application where the considered state is the one given by the Java Virtual

Machine (JVM) [15], the partitioning was done at the level of the bytecode representation,

instead of going down to the processor implementation.

2.5 Reconfigurable Processing Units

One way to implement a coprocessor is to design an Application-Specific Integrated

Circuit (ASIC). This is the solution which usually gives the best performance [34] with

respect to area and power. However, ASICs are extremely expensive: as any Integrated

Circuit (IC), they have initially high production costs and only become cost effective when

mass-produced. In addition, ASICs can only do what they were designed for (the circuit is

unchangeable after fabrication). Usually, ASICs are designed only when: the hardware unit

will run a significant part of the computation; will be produced in high volumes; and when a

Execution Time

C
on

su
m

ed
 E

ne
rg

y

State A

State B
a) GPP

State B
b) GPP+Coprocessor 1

State B
c) GPP+Coprocessor 2

11

software-only solution would not give satisfactory results (e.g., hardware video

encoders/decoders for established codecs, such as MPEG-2 and H.264).

These limitations associated to ASICs strongly motivate the use of reconfigurable

hardware [35]. Reconfigurable hardware usually takes the form of an IC with several

computational components and reconfigurable connections. Such as the ASIC, all components

of a reconfigurable IC are already in place and cannot be modified in the field. What makes

the hardware reconfigurable is the capability to change, through configuration, the functions

of the components and their connections.

Figure 2.2 shows a possible reconfigurable fabric that can be used as an RPU in a system,

with components represented as named boxes, connected by reconfigurable interconnect

resources. The components can be as simple as Look-Up Tables (LUTs) and Flip-Flops (FFs)

or as complex as Functional Units (FUs) with one or more Arithmetic-Logic Unit (ALU),

memories or even entire General Purpose Processors (GPPs) [36].

Figure 2.2. Possible two-dimensional structure for a reconfigurable fabric (source: [36]). FU

identifies Functional Units, MEM identifies local memories, and IOB identifies Input/Output

blocks.

The interconnect resources can be very simple, e.g., allowing connections between only

some neighbor components, or more complex, e.g., allowing connections from each

component with any other component in the fabric. Input/Output Blocks (IOBs) can be used

for communication with components outside the RPU. Reconfigurable hardware can be

classified into two groups according to the data-size of their components (granularity) [37].

Fine-grained reconfigurable hardware has components which work with data-sizes of a

12

couple of bits (e.g., LUTs, FFs). If the components have higher bit-widths (e.g., from 8 to 32

bits), the reconfigurable hardware is usually considered coarse-grained. Finer granularity

means more flexibility on one hand, and higher overhead on the other.

The degree of flexibility provided by the components and connections of an RPU

determines the effort needed to map computations to that RPU. An RPU with less flexibility

in configurability is not as expressive, but requires lower mapping effort.

The communication costs between a GPP and an RPU depend on the kind of coupling the

RPU has with the other components in the computing system. We can consider the four

general cases of coupling [38] represented in Figure 2.3. They are ordered from the loosest

coupling to the tightest coupling. Loosely coupled RPUs are easier to integrate in a system,

but usually have higher communication delays. Tightly coupled RPUs are attractive due to

lower latencies and communication delays, but integration with the host is more invasive and

usually implies co-designing the RPU and the GPP.

a) RPU coupled to the I/O bus b) RPU coupled to the local bus

c) RPU coupled to the CPU d) RPU integrated in the CPU datapath

Figure 2.3. Types of RPU coupling with respect to the host system.

2.5.1 FPGAs

Field-Programmable Gate Arrays (FPGAs) [39] are an example of fine-grained

reconfigurable hardware. Although some FPGAs can have coarse-grained components, such

13

as multipliers, their smaller and most common components are LUTs and FFs, addressable at

the single bit level. FPGAs are mass-produced, making them relatively affordable, and their

extreme flexibility allows for broad design space exploration. If the components of a

reconfigurable fabric have a sufficiently fine granularity, as in the case of FPGAs, it is

possible to implement virtually most digital hardware circuits, since their design components

include typical basic blocks used when designing ASICs.

To design hardware circuits for FPGAs, we typically use Hardware Description

Languages (HDLs), such as VHDL [40] or Verilog [41]. Specific suite of tools (e.g., Xilinx

ISE [42]) can then synthesize the hardware described in the HDL into the configuration bits

of a specific FPGA (known as the bitstream). Between the HDL description and the

configuration bits there is a number of important steps, commonly handled by separate

programs [43].

The first step is to convert the description into logic gates, by an RTL (Register-Transfer-

Level) Synthesis tool [44]. At this point, the synthesis tool employs a number of

optimizations, such as logic minimization [44]. The logic gates are fed to a mapper, which

will find a correspondence between the abstract logic gates and the kind of components

present in a specific reconfigurable device (Mapping). The next step, Placement, is

responsible to assign each of the components in the description with a real component of the

fabric. Then, in the Routing step, a router establishes the connections between the

components. In the last step, the bitstream is generated.

2.5.2 CGRAs

Coarse-grained reconfigurable architectures (CGRAs) [37] use functional units with

higher bit-widths (e.g., ALUs with 8, 16 or 32 bits) having native support to word level

computing. CGRAs are an alternative to FPGAs for cases where flexibility at the bit-level is

not necessary. By reducing flexibility, CGRAs are able to outperform FPGAs on certain

characteristics.

For instance, due to the extreme flexibility and their ever increasing sizes, FPGAs have

time-consuming design cycles. Furthermore, the back-end phases are very complex as the

tools need to deal with a high volume of information1. For large designs, the total time of the

mapping and placement and routing process can go from several minutes to several hours,

1 For instance, a Virtex-5 XC5VLX110 needs a file of 29.1 Mbits to configure the entire device [45].

14

depending on the effort of the algorithms. By using larger and fewer building blocks, the size

of the mapping problem reduces drastically, as is the case with CGRAs.2

CGRAs also have a more predictable clock frequency. Although there have been efforts

on the development of asynchronous reconfigurable logic [48], most reconfigurable

architectures are synchronous. In the case of FPGAs, the clock frequency is dictated by the

maximum delay of the combinatory circuits between registers (i.e., critical path delay). This

delay is not only dependent of the characteristics of the circuit design, but also dependent on

the ability of the mapping tools to reduce this path. Coarse-grained arrays usually have fixed

transfer rates between components, and a fixed-clock frequency.

2.6 Dynamic Compilation

Compilers [49] are programs which translate source code written in a programming

language into another computer language (in most cases, machine language which can be

executed by a GPP). Compilation is known as static compilation or offline compilation when

it is performed prior to the execution of the program.

Although the first job of a compiler is to translate between languages (or representations

of computations), most compilers also perform transformations and optimizations to the code

[50]. It is crucial that a compiler produces target code that is functionally equivalent to the

source code, but the quality of a compiler is usually measured by how well it tunes the

program to specific requirements, such as execution time, or program size. As static

compilation is done before the program is released, the compiler can use complex algorithms

to transform the program, bearing in mind those requirements.

Dynamic compilation presents another approach for compilation. Steps of the compilation

process are delayed until the execution of the program (runtime). Then, at runtime, those

compilation steps are performed, possibly using additional information not available offline

(e.g., specific information about the hardware which is running the program, information

about the behavior of the program).

Java is a widely popular language [51] that relies on dynamic compilation for a number of

compilation steps. The program is distributed in an intermediate representation (the Java

2 There is a trend to use fine-grained reconfigurable fabrics (such as FPGAs) to implement CGRAs [46, 47],

thus, creating an architectural layer easier to deal with.

15

bytecodes), which is written in a virtual ISA (i.e., the ISA of the Java Virtual Machine – JVM

[15]), and compilation addressing the real processor is performed during program execution

(known as JIT – Just In Time - compilation). Compiling during runtime allows Java compilers

to take advantage of additional information available at runtime, as well as significantly

improves the performance of interpreted code.

Delaying the last part of compilation to runtime is also used to enhance portability. By

compiling to an intermediate representation (the Java bytecodes) theoretically every system

with a mechanism implementing the JVM can run the program. This approach has already

been used in embedded systems to distribute the same application (e.g., software games)

across very different models of, e.g., smart phones. Another advantage of this approach is to

allow developers to use the same toolchain and development environment to develop

applications, instead of using a toolchain and special compilers for each target system.

In traditional hardware/software co-design [52], the decision of which parts of the

program are executed in the GPP and which parts are executed to a coprocessor is performed

at design time, and that information is encoded into the binary. An alternative approach is to

delay this decision until the execution of the program. This way it is possible to benefit from

dynamic compilation features, such as enhanced portability and runtime adaptation. Herein,

we refer to this approach as Dynamic Hardware-Software Partitioning, DHSP, or simply

dynamic partitioning (see the problem formulation in Figure 2.4) [13, 14, 53].

We consider at least four phases in dynamic partitioning: Detection, Translation,

Identification and Replacement. These phases do not necessarily need to be executed by this

order (e.g., Translation can be performed either after Detection or after Identification).

Detection determines which sections of the application are candidates to be moved to the

coprocessor; Translation transforms detected sequences of instructions into an equivalent

representation for the coprocessor; Identification finds, in the program execution, the sections

which were detected as candidates to be moved; Finally, Replacement refers to the

mechanisms by which the execution flow moves from the GPP to the coprocessor and vice-

versa.

Each one of these phases can implement its own set of algorithms and have different

levels of complexity. For instance, during Detection, an algorithm can, before deciding to

accept a section as candidate, estimate if that particular section is worth moving to the

coprocessor, to reduce the number of candidates. Translation algorithms can use intermediate

representations, or perform transformations and optimizations over the sequence of

16

instructions using runtime information (e.g., Intermodular Inlining [54]). Identification can

use several heuristics to locate the detected sequences in the execution trace. The

Replacement can be done either by direct signals to the GPP, or by rewriting the instruction

memory.

Problem formulation: Dynamic Hardware-Software Partitioning (DHSP)

Given a computational system composed by a GPP, a coprocessor, and an

application which executes on the GPP, dynamic partitioning analyses the

application execution, decides which sections of the application should be moved

to a coprocessor, and executes the application according to the decision, so that

the global execution of the application can be improved according to some

established criteria (e.g., execution time, energy consumption).

Figure 2.4. Dynamic Hardware-Software Partitioning problem formulation.

Note that the problem formulation in Figure 2.4 states that deciding which computations

to move and executing the decision take place during program execution. However, it does

not imply that all the necessary steps to perform hardware-software partitioning must be done

at runtime. For instance, if the coprocessor is an RPU, the dynamic partitioning system can

have a repository of pre-built RPU configurations, and decides at runtime which

configurations to be used. Alternatively, a full-runtime system performs all tasks (e.g.,

detection, translation, identification, replacement) during program execution. The problem

formulation leaves these possibilities open for different implementations.

Being able to automatically take advantage of the coprocessors in a computing system

without resorting to recompilation is particularly appealing to embedded systems. It is

common for embedded systems to often rely on very specific hardware modules to meet their

requirements. With this technique, it may become easier to take advantage of different

accelerators or to try different hardware solutions. It can also enable seamless integration

between applications and a family of RPUs which can vary in some particular features, such

as local memory, and/or number of functional units.

17

2.7 Summary

This chapter briefly introduced a number of important concepts that are used throughout

the thesis, from static to dynamic compilation, possibly considering hardware/software co-

design, and the use of reconfigurable processing units (e.g., based on reconfigurable

hardware) connected to a general purpose processor.

When compared to ASICs, reconfigurable hardware is much more flexible, and

reconfigurable fabrics such as FPGAs can virtually implement the circuits of any ASIC. This

flexibility comes at a price though: due to the reconfiguration overhead, reconfigurable

hardware can be slower, needs more area and dissipate more power [39]. On the other hand,

reconfigurable hardware offers the possibility of experimenting hardware designs, and of

applying hardware acceleration to cases which otherwise would be cost-prohibitive. Another

untapped potential of reconfigurable hardware is that it can adapt itself to each application,

e.g., during runtime.

Although reconfigurable hardware promises the possibility of accelerating many types of

applications, this promise remains partially unfulfilled, mainly to difficulties related to the

available tools. By transparently migrating computation to coprocessors (e.g., RPUs) and

using information available only at runtime, we see dynamic partitioning as a possible

candidate to further bridge this gap.

We formulated the problem of dynamic partitioning, and identified four different phases in

dynamic partitioning: Detection, Translation, Identification and Replacement.

19

3 Related Work

This chapter introduces relevant work related to our approach. We include approaches

based on traces, runtime reconfiguration, and binary translation, and describe in detail three

relevant works in dynamic partitioning addressing reconfigurable computing architectures.

These three works transparently move instructions being executed in a General Purpose

Processor (GPP) to reconfigurable hardware, bearing in mind embedded systems as target.

3.1 Binary Translation

Section 2.6 of Chapter 2 introduced dynamic compilation, using Java bytecodes as an

example of an intermediate representation. There are cases where a computing system, instead

of translating instructions of a virtual ISA (such as the Java Virtual Machine), uses the binary

code for a real microprocessor [55-57]. This is called binary translation [18], and can be either

static or dynamic.

Approaches such as Paek et al. [58] perform loop detection by doing static analysis of the

executable binary. In their work they decompile the code and analyze loop structures. They

focus on innermost loops, without branches and whose iteration count can be determined

statically. They also consider loop unrolling when the iterations of both the inner and the

outer loop can be determined statically (only the inner loop is unrolled). The target

coprocessor is a data-flow oriented CGRA which supports context pipelining. After loops are

detected, the binary is modified to include the CGRA mapping and communication routines.

One example of dynamic binary translation is the Crusoe microprocessor. The Crusoe

translate and executes binaries written in the Intel x86 ISA on the fly, to a microprocessor

which not only has different ISA, but a substantially different architecture [21]3. The Crusoe

uses a Very Long Instruction Word (VLIW) processor, an architecture designed to take

advantage of Instruction Level Parallelism (ILP). The Crusoe is able to execute native x86

3 Pentium microprocessors also uses binary translation, to translate instructions of the old x86 ISA to the

new ISA of the microprocessor [19].

20

code at a performance level similar to a superscalar processor, while achieving a lower

thermal envelope.

3.2 RPU Architectures

As previous work has shown, if we move critical loops to dedicated hardware units, we

can have significant performance improvements [13]. There have been many proposals on

accelerators using reconfigurable computing concepts, as well as a plethora of architecture

designs. Most well-known examples include Matrix [59], RAW [60], Adres [61], REMARC

[62], Morphosys [63], GARP [64], Chimaera [65], Piperench [66], XPP [67] and Rapid [68].

Each one of these architectures proposes unique features and tries to address faster execution

and/or energy savings for a set of algorithms and/or domain-specific applications. Currently,

there is a wide choice of hardware accelerators, and FPGA-based reconfigurable fabrics are

an accessible technology to implement them. However, a significant hurdle for reconfigurable

architectures is the significant cost of mapping the programs.

In a first phase, the portion of the program that executes on the reconfigurable hardware

needs to be translated to the new architecture. In some cases, the reconfigurable architecture

needs to be manually programmed, using an HDL like-language, while in other cases, the

authors provide compilers specifically developed for the architecture, which either support an

already established language, or a new high-level specification (e.g., as in MorphoSys [63]).

However, writing a good compiler is not trivial, and it is to be expected that compilers for

new and substantially different architectures are not as mature as compilers for well-

established architectures, which already have many years of development and testing4.

After the translation of program portions to the reconfigurable architecture, the program

running on the GPP needs to call the custom hardware. These calls can be inserted in the

executable code either manually by a programmer, or automatically by a compiler. There has

been a substantial effort in the development of compilers which statically partition a program

into software and hardware parts, and automatically generate the HDL description of the

hardware parts [70, 71]. With an important role in that process are the C-to-gates compilers,

4 Projects like LLVM [69] can partially solve this problem. LLVM is a compiler infrastructure which

provides front-ends to well-known languages, and abstracts the target architecture from most phases of
compilation, only introducing it when absolutely necessary.

21

which focus on synthesizing hardware modules, usually written in an HDL, from code written

in a subset of C [10, 11].

3.3 Dynamic Partitioning Approaches

The execution trace, the sequence of instructions executed by a program, is the starting

point of many dynamic approaches. It is possible to extract information from traces which is

only available at runtime, such as the frequency of taken paths, and use that information to

generate more efficient code.

Bala et al. [72] developed Dynamo, a system which transparently improves the code

executed by a GPP. Dynamo monitors the execution of the native instructions of a GPP and

uses runtime information to make native-to-native transformations. The working unit of

Dynamo is the fragment, a dynamic version of the superblock [73]. A fragment is formed by a

sequence of executed basic blocks which do not jump backward. By speculatively executing

fragments, Bala et al. improved the execution time of code which was compiled with default

compiler optimizations.

Gal et al. [74] used a trace-based compilation technique for dynamically-typed languages

(e.g., JavaScript, Python). In such languages, the types of expressions are not statically

defined and may vary during runtime. To cope with this, compilers produce code capable of

resolving any kind of type combinations. The objective of their work is to reduce the

expressions to the types being actually used by the application at runtime, producing more

efficient code. They work over the granularity of the loop, based on the expectation that they

represent a big portion of the program execution, and that inside loops, the types of the values

are mostly invariant. Loops are detected and built over the execution trace by monitoring

backward branches. They propose a structure called trace tree, which represents the hot-paths

of a loop.

Below we examine in detail three relevant approaches which are closely related to the

work in this thesis: Warp [13], CCA [75] and DIM [14].

3.3.1 WARP

Lysecky et al. propose the Warp Processor [13], a system which implements a full-online

dynamic partitioning approach. The system includes a GPP, a fine-grained RPU

(Reconfigurable Processing Unit), and a dynamic mapping module. The dynamic mapping

module automatically detects critical loops on the GPP and maps the corresponding binary

22

code to the fine-grained reconfigurable, logic-based, RPU. Originally, the authors considered

a system which used a common hardcore GPP. In a posterior work they used the same

technique to improve the competitiveness of soft-core processors in embedded systems [76].

The Warp architecture is composed by a GPP, with separated buses for data and

instructions (Harvard architecture), a profiler, an on-chip CAD (Computer-Aided-Design)

module, and a custom-made FPGA acting as the RPU (see the block diagram in Figure 3.1).

The profiler is non-intrusive – i.e., the profiler does not use instrumentation, which

changes the binary code and/or the processor execution to introduce instructions which gather

information – and is attached to the instruction bus. The profiler is lightweight, and only

monitors the addresses of the executed instructions.

The on-chip CAD Module is connected to the instruction bus and receives information

from the profiler. It is responsible for translating the loops detected by the profiler to the

FPGA. The CAD module is implemented as another GPP running the mapping tools

developed by the authors of Warp.

Figure 3.1. Block Diagram for the WARP Processor (source: [13]).

The custom FPGA, called Warp-Oriented FPGA (see Figure 3.2), besides the configurable

logic, also includes a data-address generator (DADG) with loop control hardware (LCH),

three input-output registers, and a 32-bit multiplier-accumulator (MAC). All memory accesses

from the FPGA are handled by the address generator, and the LCH is used to reduce the loop

overhead of critical kernels. A 32-bit MAC is included as it is an operation used frequently

enough to justify dedicated hardware, instead of an implementation using the reconfigurable

logic.

23

Figure 3.2. Block Diagram for the W-FPGA (source: [13]).

The reconfigurable logic of W-FPGA was designed to minimize the time spent during

hardware synthesis, and has significant differences from the reconfigurable logic employed in

commonly available FPGAs. Instead of optimizing the performance of Look-Up Tables

(LUTs), e.g., by using LUTs with 5-6 inputs [77, 78], and of Configurable Logic Blocks

(CLBs), e.g., by using clusters with 8 LUTs [79], they focused on a simpler design which

allows faster mapping and placement. This resulted on a reconfigurable architecture which

uses 3-input/2-output LUTs and CLBs with 2 LUTs each. Furthermore, the routing was also

simplified, and each CLB is connected to a switch matrix which has 8 channels – 4 for the

adjacent nodes, and 4 for routing between every other switch matrix. As a result, the mapping,

placement and routing algorithms developed for W-FPGA are significantly simpler and faster

than the ones used on common FPGAs.

The Warp system maps hotspots consisting of innermost short loops to W-FPGA. To

detect those loops, they take advantage of the fact that there is a high correlation between

short backward branches in a program and the beginning of a loop. Every time the profiler

detects a backward branch, the address is stored in a small cache (16 entries of 8 bit values)

which monitors branch frequencies. If the value of a branch frequency saturates, a shift is

performed to all values, to maintain a list of relative frequencies. When an address reaches a

certain threshold of saturations (the value of 10 is referred in [76]), the address is considered

as the beginning of a critical loop.

After a loop is detected, the on-chip CAD Module reads the binary code with the

instructions of the loop. It then transforms the loop instructions into hardware descriptions,

and the hardware descriptions into a bitstream. The bitstream is then loaded into the custom

FPGA (i.e., W-FPGA). There are, however, constraints in the implementation of each loop. A

24

loop may include accesses to the memory, but they must follow regular access patterns. In

addition, the number of iterations of the loop must be known (however, the loop can terminate

at any iteration).

The on-chip CAD Module does extensive transformations to loop instructions before they

can be translated and run in the W-FPGA. The first step of the translation is decompilation.

The CAD tool converts each binary instruction of the loop into an equivalent register transfer

representation, which is independent of the instruction set. This representation is used to build

a control flow graph (CFG) and a data-flow graph (DFG), then merged into a Control/Data

Flow Graph (CDFG). The CDFG is used to apply standard compiler optimizations and to

detect higher-level constructs such as loops and if statements [80].

The next step is Partitioning (as represented in Figure 3.3). The kernel identified by the

profiler is analyzed, and by using a simple partitioning heuristic, which tries to maximize

speedup and reduce energy, the partitioning algorithm decides if the kernel should be

implemented in hardware.

Figure 3.3. Binary to Hardware Translation Flow (source: [13]).

During Behavioral and Register-Transfer Synthesis, the CDFG is converted into a

hardware circuit description, which is in turn converted to a netlist format. The JIT (Just-In

Time) FPGA Compilation step is similar to the traditional synthesis, mapping, and placement

and routing, albeit adapted to W-FPGA and using customized tools and algorithms, optimized

for runtime utilization. In Logic Synthesis, the hardware circuit is optimized. The compiler

creates a directed acyclic graph and applies a custom two-level logic minimization [81],

25

which traverses the logic network in a breath-first manner, applies logic minimization at each

node and uses a single expansion phase.

During Technology Mapping, the compiler transforms, in a first-pass, the netlist

representation to match the 3-input/2-output LUTs of W-FPGA, using a greedy hierarchical

graph-clustering algorithm. During a second-pass, the compiler packs the LUTs into CLBs.

In the Placement step, the compiler uses a greedy dependency-based positional algorithm

to place the CLB nodes onto the configurable logic. Initially, the algorithm determines the

placement of the CLBs relatively to each other. After that, the result is superimposed and

aligned.

Finally, the compiler uses a custom router [82, 83] to perform the Routing. The router uses

the same algorithm used in the Versatile Place and Route's (VPR) tool [43, 84], with the

routing model cost of the W-FPGA. The algorithm allows the overuse of routing resources

and illegal routes, and eliminates illegal routes by repeating routing iterations. The algorithm

is greedy and uses the adjusting cost to discourage selecting the same initial route during

subsequent iterations. After determining a valid global routing, the compiler builds the routing

conflict graph, having the W-FPGA technology into account. To resolve conflicts, it uses a

simple and greedy vertex coloring algorithm [85].

If the translation succeeds, the program is updated by the Binary Updater (see Figure 3.3).

The original program is modified by introducing a branch instruction which will jump to code

responsible to initialize W-FPGA, instead of executing the instructions of the loop. The code

for initializing the reconfigurable hardware includes an enable signal to W-FPGA, code to

power-down the GPP into sleep mode and a jump to the instruction immediately after the end

of the original software loop (skipping in this case the execution of the loop instructions by

the GPP). When the W-FPGA finishes execution, it sends an interrupt which wakes up the

processor and resumes its execution. The processor and W-FPGA execute in a mutually

exclusive mode, i.e., only one of them can be executing at any given time. This simplifies

access to data, avoiding data coherency and consistency issues. Furthermore, the authors refer

that they have not found a significant advantage in parallel execution of both components for

the tested cases. They also consider that only a single application (and single-threaded) is

executing in the system.

For the experimental results with a hardcore CPU, they used two ARM7 processors, one

as the GPP and one for the CAD module. The mapping algorithms needed, on average, 1.2

seconds to complete on a 40 MHz ARM7. They compared speedup and energy reduction of

26

critical regions for 15 selected benchmarks related to embedded systems. The applications

considered are from NetBench [86], MediaBench [87], EEMBC [88], Powerstone [89] and

their own on-chip logic minimization tool, ROCM [81].

When compared with a common FPGA (Xilinx Virtex-E), W-FPGA presents 1.5× faster

clock frequencies and 25% less power. Overall, when compared to the execution of the

benchmarks on an ARM7 at 100 MHz, the Warp Processor shows application speedups of

6.3× and energy reductions of 66%, on average. They identified memory accesses as the main

bottleneck in the tested benchmarks.

For the experimental results with the soft-core GPP, they used two MicroBlaze processors

[90], one as the GPP and one for the CAD module. They considered two FPGAs for

implementation of the Warp Processor, a Xilinx Virtex-II Pro clocked at 100 MHz, and a

Xilinx Spartan 3 clocked at 85 MHz. The mapping algorithms needed, on average, 11 seconds

to complete the mapping of a single kernel. They compared speedups and energy reductions

of critical regions for 6 selected benchmarks from EEMBC [88] and Powerstone [89]. When

compared to the execution of the benchmarks in a single MicroBlaze at the same frequency as

the corresponding Warp Processor, they present speedups of 5.1× and 5.9× on average, at 100

MHz and 85 MHz, respectively. They note that the higher speedup of the Spartan3 is due to

the lower operating frequency of its base case. Of the six benchmarks used, one (brev) had a

much higher speedup than the others. This happened because the critical kernel of the brev

benchmark has intensive bit-manipulations which map very efficiently on an FPGA. Without

considering this benchmark, the speedups are 3.3× and 3.6×, on average, at 100 MHz and 85

MHz, respectively.

The energy consumption depended on the dynamic partitioning scenario. In a scenario

where a significant portion of the execution runs on the FPGA, and the changes between the

GPP and the FPGA are infrequent, they present energy reductions of 65% and 55% for 100

MHz and 85 MHz, respectively. In a similar scenario, but where the changes are continuous,

they present energy reductions of 55% and 24% for 100 MHz and 85 MHz, respectively.

They justify the lower performance on energy of the Spartan3 to its lower static power

dissipation. Since it is significantly lower than the static power dissipation of the Virtex II-

Pro, the dynamic power dissipation of the MicroBlaze, which runs the CAD tools, represents

a much higher overhead in the case of the Spartan3.

Finally, the authors compared the Warp Processor using the MicroBlaze with existing

hardcore processors for embedded systems. For the Warp Processor, they only considered the

27

Spartan3 implementation, since they considered that the Virtex-II Pro dissipates too much

power for embedded systems (e.g., it often exceeded 1W). For the hardcore processors, they

considered a set of ARM processors (ARM7, ARM9, ARM10, and ARM11). For the same set

of benchmarks, the Warp Processor with a MicroBlaze at 85 MHz had energy consumption

comparable to an ARM10 at 325 MHz but executed 1.5× faster on average.

3.3.2 CCA

The Configurable Compute Accelerator (CCA) [91] is a special-purpose unit for executing

complex instructions. It was designed to be integrated in the pipeline of a GPP (see the block

diagram of Figure 3.4). However, instead of predefined special instructions, it executes

arbitrary Data-Flow Graphs (DFGs). Also, instead of directly accessing the CCA through

programming, the unit itself has hardware support for binary translation, which automatically

moves code from the instruction pipeline to CCA.

Generally, a CCA consists of a 2-D array of simple functional units (FUs) interconnected

in a feed-forward manner. The implementation of a CCA, such as other RPUs, has a fixed

number of FUs and a fixed organization, but the operations and connections between the FUs

are configurable. There can be many CCA implementations, depending on the target domain.

Using results from previous work efforts [92, 93] and information from benchmark profiling,

the authors propose the CCA shown in Figure 3.5 [91]. It is a triangular shaped matrix of FUs,

where the FUs in any given row are homogeneous, and alternately, each row supports either

arithmetic and logic operations, or only logic operations. Between each two adjacent rows of

FUs, there is a crossbar for communication. This particular CCA presents some constraints: it

is limited to 4 inputs and 2 outputs, does not support memory operations (e.g., load/stores),

and the output of an FU can only be used as the input of an FU in the adjacent row.

The objective of CCA is to execute small clusters of simple instructions as one macro-

instruction. To detect which portions of code should be moved to CCA, the mapping system

performs subgraph discovery. To perform subgraph discovery, the instructions need to be

transformed into a DFG representation first. Then, they run a subgraph discovery and

selection algorithm in the resulting DFG, which substitutes clusters of the nodes using basic

instructions (e.g., ADD, XOR ...) with macro-instructions which can be executed in CCA.

The authors studied the use of the CCA of Figure 3.5 (which has depth 4) as well as other

CCAs [91]. They discovered that, for the selected benchmarks, 99.47% of the graphs could fit

in a CCA with depth 7 or less. However, CCAs with lowers depths are attractive because they

28

have lower latencies. They have also considered several CCA implementations with depth 4,

a case which can handle 82% of the graphs.

Figure 3.4. CCA-Enabled Processor Block Diagram (source:[53]).

Figure 3.5. Example of a CCA Implementation (source:[53]).

The CCA approach proposes two methods for subgraph discovery: (a) using an optimal

algorithm during compilation (static), and (b) using a heuristic during instruction retirement,

in a trace cache (dynamic). The static method is employed offline, using code profiling and an

optimal subgraph discovery algorithm developed by the authors and based on previous work

[75, 94]. After detection of the graphs, the compiler modifies the binary so that the clusters of

instructions which were chosen as good candidates for CCA graphs, i.e., clusters of

29

instructions that form a graph candidate to be mapped to CCA, can be easily identified.

Initially, the authors used two new ISA instructions, CCA_START(liveout, height) and

CCA_END to surround the cluster of instructions. In a subsequent work [53], they discarded

those two instructions and instead encapsulated the cluster of instructions in a subroutine, and

called it with a special instruction (BRL’). The authors refer that in case the binary needs to

run in a processor which does not have a CCA, the special instructions CCA_START and

CCA_END can be converted to NOPs, and the BRL’ instruction can interpreted as a normal

“branch and link”.

For the dynamic detection approach, the authors propose a simpler algorithm for graph

discovery [91]. Instead of doing an optimal search, which is too time-consuming for runtime,

the algorithm uses a heuristic. Starting at a seed node, the graph grows upwards, towards the

parent nodes. Each time a parent node is added, the new graph is considered as a mapping

candidate. If adding a parent node violates CCA constraints, the node and its parents are

discarded. When transforming the binary instructions to a graph, each operation is associated

with a ‘slack’ value. A lower slack value of an operation represents a less critical operation to

the dependence height of the DFG. The slack value is used to choose between multiple

parents (lower slack values take priority). As the discovery of the graphs to map is done

bottom-up, starting at a single node and growing up through its parents, the graphs will

resemble the upside-down triangular structure of CCA.

The heuristic is applied in the instructions of a special trace cache, implemented using the

rePlay framework [95]. This particular trace cache is called a frame5 cache, which is similar

to a trace cache, but is built upon predictions on the branches of several basic blocks. While

the program runs, the frame cache builds the frame. After the frame is built, if at any point

during execution any of the predictions happens to be wrong, the frame is discarded. This

way, a frame can transparently cross basic block boundaries.

From the two approaches for detection that authors initially considered the, i.e., static and

dynamic, they concluded that the frame cache requires a large amount of resources and

power, which caused dynamic subgraph discovery using a frame cache prohibitive for

embedded systems. In a subsequent work [53], focused on embedded processors, they

5 A frame can be seen as a large basic block, with one entry-point and one exit-point. Branches inside the

frame are converted to control flow assertions, and if one these assertions is triggered, the entire frame is
discarded.

30

propose a general architecture framework for connecting any kind of CCA to a GPP, as well

as a dynamic partitioning approach where the detection phase is done offline, during

compilation.

Clark et al. [91] propose three possibilities for the execution stages where the

Replacement and Translation can be done: during instruction decoding, inside the frame

cache, and during instruction retirement. They concluded that the first case has low hardware

overhead, but as it is done in the decode stage we are severely restricted by the stage latency.

Moreover, it does not allow the crossing of basic block boundaries. The experimental results

show that, of the three considered cases, the first case is the approach with the worse

performance [91]. The second approach allows a better performance, but has a higher

hardware overhead [91]. A subsequent work [53] focuses on a combination of the third

approach with additional information from a detection phase done during static compilation.

As this case is the approach they considered the best solution for embedded processors, we

will describe herein the mapping algorithm behind the third case.

The mapping algorithm takes a sequence of instructions, detected as a complex instruction

for CCA, and generates the configuration bits of the corresponding subgraph which can be

obtained from this sequence of instructions. Figure 3.6 shows how the algorithm translates a

sequence of instructions into a CCA configuration. The BRL’ instruction in the Subgraph

Code box signals a new subgraph. This subgraph was previously detected by the compiler and

respects a number of characteristics: the number of inputs (or live-ins) and outputs (or live-

outs) have predefined limits; all memory operations inside the graph are relative to temporary

values (i.e., spill code); the subgraphs may cross basic block boundaries by using downward

code motion during compilation.

The algorithm uses a Current Producer table, updated at each step, and which maps for

each register and at that given time point, which FU produced the most recent definition of

that register. The algorithm reads each instruction of the subgraph code in sequence, one at a

time. For each instruction, it checks its input operands. If a given register in the input operand

of the instruction is not in the Current Producer table, it is added to the list of inputs (Step 1

and 3 in Figure 3.6). The placement of an instruction is determined by which FUs produce a

result used by that instruction. If an instruction needs a result from a previous FU, the

placement of that instruction has to be, at least, immediately below the FU with greatest

depth. For example, the instruction in Step 4 (see Figure 3.6) depends on the result of FU B,

31

which is in the first row of CCA. Thus, the instruction has to be placed on the second row of

the CCA. The output operand of an instruction is marked in the Current Producer table.

CCA does not support memory operations (i.e., load/store operations), but has a special

table to support spill code elimination. It is guaranteed by the compiler that any load/store in a

subgraph refers to a temporary value that will not be used outside of the subgraph. Every time

there is a store inside a subgraph (Step 2 in Figure 3.6), the table stores the memory offset of

the store, as a way to identify the store, and the FU which has produced the value to store.

When a load happens (Step 5 in Figure 3.6), the algorithm uses the information in the table to

identify which FU has the needed value and correctly update the Current Producer table.

Figure 3.6. Mapping a subgraph into CCA (source: [53]): in the left are shown a sequence of instructions

representing a subgraph code (top) and a CCA structure (bottom); in the right side of the subgraph code

are shown the steps performed by the mapping algorithm.

As the CCA architecture is not pre-determined at compile time, the detection phase can

extract subgraphs which will not map to a particular CCA. If a CCA does not have enough

resources (e.g., FUs) to implement a particular subgraph, the mapping aborts and the

sequence of instructions execute in the GPP.

After a subgraph is successfully mapped to CCA, Replacement is done by updating the

entry of the corresponding branch on the Branch Target Address Cache (BTAC) represented

in Figure 3.4. Branches to this location will trigger CCA execution.

For the experimental results, they present the speedups obtained using 29 selected

benchmarks. The speedups were calculated as the ratio of execution cycles without and with

32

CCA. They use benchmarks taken from SPECint2000 [96] and MediaBench [87] repositories,

and also include four encryption algorithms (3des, blowfish, rijndael, and rc4).

The results, achieved by simulation, revealed a maximum speedup of about 1.6×, and an

average speedup of about 1.2×, with a CCA with 4 levels and using dynamic detection and

translation [91]. When using the mixed static detection/dynamic translation of the most

recent approach, they could improve the average performance to 1.60×, 1.91× and 2.79× for

the SPECint2000, MediaBench, and encryption benchmarks, respectively, while using less

hardware resources (in this case they do not use the frame cache) [53].

When comparing the first two approaches used for graph discovery, the authors concluded

that the static detection was consistently better than dynamic detection. This was expected,

since the static detection uses an optimal algorithm instead of a heuristic. However, the

differences in the results obtained between the two approaches were minimal – both

approaches achieve an average speedup between 1.2× and 1.3×. The authors explain the

similar results by referring that they used an Instruction-Set Architecture (ISA) which has few

registers (16). This increases the number of memory operations, and since CCA does not

support them, it strongly limited the amount of computation which could be done in a single

graph, as well as the exploration space of the static detection method. In the third approach,

they exclusively used static detection and added support for spill code elimination, which

contributed to the increase in the average speedup of the SPECint2000 and MediaBench

benchmarks [53]. Furthermore, the results showed that CCAs with depths greater than 4 did

not provide significant gains in performance [91].

3.3.3 DIM

Beck et al. [14] propose the Dynamic Instruction Merging (DIM) technique, a binary

translation method to transparently move basic blocks from a general purpose MIPS processor

to an RPU consisting of a coarse-grained reconfigurable array (CGRA). They tightly couple

the CGRA to the processor: the CGRA works as an additional functional unit in the execution

stage of the pipelining. They envision this architecture as a solution for accelerating

embedded systems that need to execute many different kinds of computations.

The authors expect the DIM architecture to run at the same frequency as the processor.

DIM (see Figure 3.7) has direct access to the contents of the register file of the processor

through a set of buses and multiplexers. In the proposed CGRA, the processing elements are

organized as a 2-D array (matrix) and only processing elements in adjacent rows

33

communicate directly. Each column of the matrix has only one type of element, existing three

broad groups for the types of elements of the CGRA. The first group is composed of simple

logic/arithmetic instructions which can be executed in less than a single clock-cycle. The

second group includes memory load and store operations. Memory operations are assumed to

have a delay equal to a cache-hit. If a cache-miss occurs, the FU stops until it is resolved. The

third group is for complex elements which can take several clock-cycles to execute (e.g.,

multipliers). Although the authors refer in a previous work that the DIM supports loads and

stores [14], in a posterior work [97] they show another architecture for DIM where the array

has no external accesses and is composed by ordinary processing elements, such as ALUs,

shifters and multipliers.

Figure 3.7. DIM Block Architecture and Configuration Example (source: [14]).

Figure 3.8 shows an overview of the Replacement system used in the DIM architecture.

The instructions are read simultaneously by the processor and by the Binary Translation Unit

(BT). They use a mixed detection-identification-translation phase: the first instruction after

any branch is the beginning of a basic block, and is automatically considered for execution in

the CGRA. Thus, after a branch, the binary translation hardware starts translating instructions

to DIM. The translation is done instruction-by-instruction, similarly to the translation in CCA

(see previous section). It continues until it finds an instruction not supported by DIM (e.g., a

floating-point operation) or another branch. If the binary translator mapped a sequence of

instructions with more than three instructions (a threshold chosen by the authors) the

translation is stored in the Reconfiguration Cache and is indexed by the value of the Program

Counter (PC) of the first instruction of the basic block.

34

Figure 3.8. Dynamic translation in the DIM Architecture (source: [14]).

During normal execution of the processor, the address at the PC is read by the dynamic

partitioning hardware while it is in the first stage of the processor pipelining. If the PC

corresponds to an entry in the reconfiguration cache, DIM is reconfigured and executed in the

fourth stage of the pipelining (Execution) instead of executing the instructions in the GPP. If

DIM is not reconfigured at that time, the processor stalls until the reconfiguration is

completed.

As previously referred, DIM uses an instruction-by-instruction translation algorithm

similar to the one used in CCA. During translation, the algorithm keeps a number of tables

where it stores information about the routing of the operands and the configurations of the

processing elements.

For each incoming instruction, the first task is to check read-after-write (RAW)

dependences using a dependence table. This table is built with the help of the array hierarchy

of DIM. During translation, the last write to a register from an FU is known. With this

information, the instruction is allocated and the dependence table updated. Finally, the routing

is determined and configured.

The DIM authors claim that with this algorithm they can use larger windows for

instructions, and consequently increase the ILP, when compared to the techniques used in

superscalar processors [98]. It is also referred that the algorithm supports functional units with

different delays and the handling of false dependencies.

The simplest detection approach used in DIM exploits exclusively the ILP inside basic

blocks. As this ILP is limited, the DIM authors propose a speculative version of the DIM,

which can cross the boundaries of up to three basic blocks. The speculative version uses a

bimodal branch predictor [99] to decide if a given branch should be added to a certain DIM

configuration. Each PC address is associated with only one DIM configuration. Since each

35

configuration only has one entry point, but can have several exit points (basic block

branches), it can be considered as similar to the superblock [73]. When the branch predictor

reaches a given maximum value, the instructions inside that branch are added to the current

DIM configuration. If a given speculation misses a predefined number of times, the entire

configuration is flushed out.

The DIM authors conclude that the performance of this approach, with or without

speculation, is highly dependent of the number of instructions of each basic block. The more

instructions a basic block has, the more instructions can be mapped to the CGRA and the

higher the performance achieved can be.

For the experimental results, they use as GPP the Minimips [100], a processor based on a

MIPS R3000, and estimated DIM power dissipation and area assuming a 0.18 µm CMOS

process. They present the speedups for MiBench [101] benchmarks, a suite of benchmarks

specific for embedded computing. They have used the benchmarks that the architecture

supported (e.g., benchmarks without representative floating-point computations).

They claim an average speedup of 2.5× and an energy reduction of 1.7× [14] when using a

CGRA with 48 rows and speculation enabled. Without speculation, they obtain an average

speedup of about 2×. According to the DIM authors, the speedup comes from executing

operations in parallel, and executing a small sequence (e.g., 2, 3) of simple operations (e.g.,

arithmetical and logical) in a single clock-cycle. They refer that, although the average power

dissipation per clock cycle with and without DIM is similar, the DIM version needs fewer

cycles to execute and consequently, consumes less energy.

3.3.4 Overview

All three approaches presented before, i.e., Warp [13], CCA [91], and DIM [14], show

speedups for a number of benchmarks. Those approaches considering power dissipation also

show energy reductions when using the RPU coupled to the GPP vs. the use of the GPP alone.

The three efforts approach dynamic partitioning in different ways. Table 3.1 summarizes a

number of characteristics of those approaches.

Warp is the only approach of the three which uses fine-grained reconfigurable hardware

(W-FPGA) as the target RPU for dynamic partitioning. Comparing to a coarse-grained, it

trades-off higher flexibility in the circuitry that can be implemented with higher overhead. It

is also the approach which needs a more complex partitioning stage.

36

Characteristics Warp [13, 76] CCA [53, 91] DIM [14, 97]

Partitioning Approach

Identify and decompile
original loops,

dynamically translate
loops to the RPU

Identify segments of
instructions which can be

executed as macro-
instructions on the CCA

Identify as many
instructions as possible,
inside one or more basic
blocks, to be mapped to

DIM

Coupling

RPU loosely coupled to
the GPP, both share
instruction and data

memory

RPU tightly coupled to the
GPP, RPU integrated in

the GPP pipeline

RPU tightly coupled to the
GPP, RPU integrated in

the GPP pipeline

Granularity Fine-grained RPU (LUTs,
MAC)

Coarse-grained RPU
(ALUs)

Coarse-grained RPU
(ALUs)

Partitioning

Monitors addresses of
executed instructions for
short backward branches,
representing inner loops

Detects subgraphs formed
by clusters of instructions:
1) dynamically, inside a

frame cache or 2)
statically, at compilation

time

Starting at any instruction
after a branch and

considering a limited
number (3) of basic blocks

Size of the segment of
code to be mapped in

a configuration

Inner loops with few tens
of lines of code

From a couple to a dozen
of instructions across basic

blocks

1) a couple to a dozen of
instructions inside a basic

block or

2) across up to three basic
blocks with speculation

Benchmarks
NetBench, MediaBench,
EEMBC, Powerstone, in-

house tool ROCM

MediaBench, SPECint,
encryption algorithms MiBench suite

Target Domain General Embedded
systems

General Embedded and
General Purpose Systems

General Embedded and
General Purpose Systems

GPP
1) ARM7 at 100MHz

2) MicroBlaze at 85MHz

1) 4-issue superscalar
ARM

2) in-order 5-stage
pipelined ARM (ARM-

926EJ)

Minimips soft-core based
on the MIPS R3000

Size of the RPU 14.2 mm2 with 180 nm
library (~852,000 gates)

0.61 mm2 with 130 nm
library > 1 million gates

Average Speedup
1) 6.3×

2) 5.9×

1) 1.2×

2) 2.3×

1) 2.0×

2) 2.5×

Average Energy
Reduction

1) 66%

2) 24% - 55%
n.a. 2) 1.7×

Table 3.1. Summary of characteristics for the three representative approaches: Warp, CCA, and DIM.

Both CCA and DIM are integrated in the pipeline of the GPP, while W-FPGA works as a

coprocessor. In the case of the Warp Processor, the mapped regions of code have to execute

for a longer time to compensate for the overhead. In fact, the Warp Processor is, among the

37

three, the only approach which considers entire loops, while CCA and DIM present speedups

by only exploiting ILP using a small number of basic blocks and without considering entire

loops. The Warp Processor also presents the highest speedups, not only because it moves

entire loops to hardware, but also because the fine-grained structure can dramatically

accelerate applications with intensive bit manipulation.

However, Warp does not consider loop pipelining, a technique which has been extensively

studied [48, 67, 102-104] and proven to be capable of substantial increases in performance.

The technique has been studied in the context of CGRAs [61] and static binary compilation

[58], although to the best of our knowledge, loop pipelining in the context of a dynamic

partitioning system is still unaddressed.

Both CCA and DIM use reconfigurable hardware as an additional functional unit of the

GPP. Being tightly coupled to the GPP gives access to the processor’s registers and to the

exploration of fine-grained instruction parallelism. However, this also means that the

reconfigurable architecture has to work very closely with the processor architecture and the

RPU and the GPP have to be designed together. This tightly coupling also places the RPU in

the critical path of the processor, and limits the amount of work the RPU can do.

All the three approaches have embedded applications as one of their targets. They couple

the RPU to GPPs commonly found in embedded devices, and they use embedded-related

benchmarks. Unfortunately, the overlapping among the benchmarks used in the three

approaches is very small. Among nine different suites of benchmarks, only one (MediaBench)

was used by more than one approach (Warp and CCA).

Warp and CCA can easily map portions of code outside basic block boundaries, but DIM

does this in a very limited fashion. Both Warp and CCA analyze the code before translating it

– as it is executed, in the first case, or in a trace cache [95] / statically by a compiler in the

second case. DIM directly translates the instructions to the hardware without previous

analysis of the code. This approach is much lighter in comparison, but makes crossing basic

blocks boundaries more difficult.

The detection of the critical kernels depends on the size of the RPU. Since the Warp

Processor addresses entire loops, it detects backward branches, which usually identify inner

loops. CCA looks for multiple partitioning units inside the graph constructed from frequently

executed portions of code. DIM does not have a mechanism for detection of critical kernels: it

tries to map the currently executing instructions every time a branch occurs.

38

3.4 Summary

This chapter briefly described the more relevant works concerning dynamic partitioning.

We gave examples of binary translation, RPU architecture and dynamic partitioning, as well

as a special attention to three approaches closely related to our work: Warp, CCA, and DIM.

The results from the three approaches reveal trends which provide a useful guide to our own

research work. They focus on embedded systems which use RISC processors as GPPs

coupled to an RPU. RPUs based on coarse-grained reconfigurable logic showed a trade-off

between potential for speedup and partitioning overhead. These works also show that there

are many options in a continuum between fully static approaches and fully dynamic

approaches, worth of being explored.

It became clear that going beyond the basic block has a significant impact. Previous work

has shown that the size of program sections to be moved can become greatly constrained if we

do not cross basic block boundaries [92]. Memory operations are another significant

constraint, and we should consider memory operations as supported RPU operations, thus

enabling the mapping of candidate sections with memory accesses.

In general, all approaches could achieve speedups around 2×, on average. The highest

performance improvement is reported in the work of Lysecky et al. [13], where they achieved

speedups around 6× with mapping of bit-level operations. However, the applications with

intensive bit-manipulation operations are limited to very specific fields (e.g., encryption).

39

4 The Megablock

The ultimate goal of our approach is to move sequences of instructions from the General

Purpose Processor (GPP) to a Reconfigurable Processing Unit (RPU) during runtime. The

sequences of instructions (code) to be moved (e.g., small groups of instructions, individual

basic blocks, entire loops) is fundamental for an efficient Dynamic Hardware-Software

Partitioning (DHSP) method (herein referred as dynamic partitioning). The units of code to be

moved from the GPP to an RPU influence the RPU architecture, the potential for

improvement, and the algorithms that can be applied during the entire process.

We focus our attention to code units considering loops, as they are commonly the ones

which contribute more to the overall execution time of the application. Specifically, this

chapter presents the repetitive pattern of code proposed in this thesis, the Megablock, and

explains why it is well-suited for moving sequential code to RPUs with a parallel computing

model. We present an algorithm for detecting Megablocks, an Intermediate Representation

(IR), and source-to-source transformations which enable the formation of better Megablocks.

4.1 Motivation

The impact of a coprocessor in the overall execution time of a program is related to the

portion of program execution moved from the GPP to the coprocessor. Consider a metric for

measuring program execution, such as the number of clock cycles (also known as latency) in

a processor with fixed clock frequency. When using dynamic partitioning methods, one

expects to move parts of the execution from the GPP to the coprocessor. We use the term

coverage to refer to the portion of GPP execution that will be replaced by execution in an

RPU, over the total execution when the program runs only in the GPP (see Equation (4.1)).

Let us consider a hardware accelerator which can improve the execution time of the

sequential code moved from the GPP to the coprocessor by a factor represented as

SpeedupHw. The overall application speedup one can achieve, according to a particular

coverage, is given by Equation (4.2). The speedup given by this equation is an upper bound

which does not take into account any overhead (e.g., communication overhead).

40

Figure 4.1a) shows overall application speedups according to the percentage of execution

that is moved to the coprocessor for several values of SpeedupHw. Figure 4.1b) presents

another view of the same data, by showing the ratio between SpeedupOverall and SpeedupHw,

according to coverage. A zero percent coverage corresponds to a speedup of 1×, while 100%

coverage corresponds to a speedup equal to SpeedupHw. Both figures show that the overall

application speedup is limited by the amount of execution we move to the coprocessor

(Amdahl’s law [105]). If we consider that SpeedupHw is a very high value (e.g., infinite), we

obtain Equation (4.3). According to this equation, with 50% coverage we can never attain a

speedup great than 2×, to attain an overall 3× speedup we need more than 66.6%, to attain an

overall 4× speedup we need more than 75% of coverage, etc. Thus, when moving

computation from a GPP, it is very important to move large portions of the program

execution; otherwise the impact of the coprocessor in the overall speedup is limited.

Coverage =

ExecutionMoved

ExecutionTotal
× 100 (4.1)

SpeedupOverall =

1

�1 − Coverage� +
Coverage
SpeedupHW

(4.2)

SpeedupOverall-Max =

1

�1 − Coverage�
 (4.3)

High coverage is not the only condition for having a significant performance impact when

moving computation from the GPP. For instance, the coverage can be distributed among

many small trace segments, which may produce low improvements when communication

overhead is also considered. However, high coverage is a necessary condition to achieve

noticeable speedups (e.g., coverage of more than 50% is needed to achieve a speedup of 2×).

Approaches which move a set of instructions [53] or single basic blocks [14] can have

high coverage. In this case, the impact is limited by what the coprocessor can do with that

sequence of instructions. For instance, the speedup when moving a single basic block is

mostly determined by its ILP, which is usually very limited [97].

An alternative to the case where a simple sequence of instructions is moved to the

coprocessor, is to move entire loops [13]. Loops continuously repeat a similar sequence of

instructions, increasing the potential for improvements when compared with a simple

41

sequence. A loop usually represents a considerable bigger portion of uninterrupted execution

than, for instance, a single basic block.

a) b)

Figure 4.1. a) Upper bound for overall application speedup as a function of the coverage, and b) ratio

between SpeedupOverall and SpeedupHw as a function of the coverage.

Hardware implementing loops is usually coupled to the GPP according to the schemes in

Figure 2.3a), b) and c). Moving computations away from the GPP enables coprocessors with

more complex behavior, but increases communication overhead. However, as loops tend to

execute for a longer time than a single sequence of instructions, they have a higher possibility

to amortize the communication overhead. As loops generally have a higher potential for

improvement than single sequences of instructions, we have chosen to explore a loop-based

execution unit.

Figure 4.2 depicts the Control Flow Graph (CFG) for a possible inner loop. Each block

can represent a unit of execution, such as a basic block. In this figure, after execution of block

A, the execution can either continue to block B or block C. After block B or block C, the

execution continues to block D. For each additional loop iteration the executions goes back to

block A, otherwise the loop ends. The CFG represents the static behavior of the loop.

However, without information about the dynamic behavior of the execution, we do not know

with which frequency the two paths are taken, or if a particular path is taken at all.

The Warp Processor [13] implements loop-based dynamic partitioning. It detects small

inner loops by analyzing short backward branches and retrieves the static description of the

loop directly from the instruction memory. Structures such as the HyperBlock [106] also

consider the static structure of a loop, but includes, for each path, the number of times it was

taken until a certain execution point.

0

1

2

3

4

5

6

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S
p
e
e
d
u
p

Coverage

10x

8x

6x

4x

2x

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

S
p
e
e
d
u
p
O
v
e
r
a
ll
/S
p
e
e
d
u
p
H
w

Coverage

2x

4x

6x

8x

10x

42

Figure 4.2. Example of the CFG of an inner loop.

The Dynamo system [72] takes another approach. Instead of starting from the static

structure of the code, it builds a dynamic structure called a fragment, which is inspired by the

superblock [73]. The runtime formation of a fragment starts when a basic block does not end

with a backward branch (i.e., there is a forward branch, or the branch is not taken). A

fragment ends when there is a backward branch at a branching point. Fragments represent a

single execution path composed of several basic blocks. Previous work which considers the

speculatively execution of fragments (i.e., assumes all the basic blocks in a fragment execute,

and uses roll-back mechanisms when the assumed conditions are not met), showed

improvements equivalent to the ones achieved when compiling with optimization flag –O4 of

gcc [72].

The ideas behind the HyperBlock [106] , the superblock [73] and Dynamo [72] present

good starting points for a dynamic loop structure which can be used to move code from a GPP

to an RPU. We were very intrigued with the potential for improvement presented by the

single path approach of the work done in the Dynamo system. Also, we consider that a

repeatable execution path in sequential code can be interesting for a parallel computing

model, and this has led us to focus on a loop structure, named as Megablock, with these

characteristics.

4.2 Megablock Definition

The Megablock represents repetitive sequences of instructions in an execution trace. It

typically represents a repetitive path formed during runtime. As with Dynamo’s fragment, the

Megablock also considers an execution path. However, the Megablock is strictly a loop

A

B C

D

Loop
Exit

43

structure, which has a unit (the loop iteration) which repeats several times in sequence. The

Megablock is also agnostic to the structure of the code and neither looks for jump instructions

nor distinguishes between backward, forward or untaken jumps. Unlike the broader definition

of a loop in Figure 4.2, the Megablock is a loop which continuously repeats the same

sequence of instructions. A Megablock represents a contiguous repeating pattern in the

execution trace, and a single execution of the pattern represents a single Megablock iteration.

A definition of a Megablock is presented below.

Megablock Definition

Consider a statically defined program P, which is formed by the sequence

of machine instructions [i 1i2 … im] . Each execution of the program

generates a sequence T, called a trace, formed with possibly repeated

instructions from P. Consider S a sequence of instructions with size m ≥ 1

present in T (being m the number of instructions). For instance, [i 5i6i7] and

[i 8i2i3] are two specific three-instruction sequences. A Megablock is a

contiguous subsequence of T formed by a repeatable sequence S,

represented by S{n}, being n ≥ 1 the number of times the sequence S

repeats. E.g., if S=[i 5i6i7] and S{3} is a Megablock found in T means that

[i 5i6i7 i5i6i7 i5i6i7] is a contiguous subsequence in T.

Megablocks have a simplified control-flow, where the same sequence of instructions

executes in loop. In any point of the Megablock there can be guard instructions (referred

herein as exit points), which test a condition to determine if the execution in the Megablock

should continue. The conditions of all exit points are tested in all iterations of the loop. If any

of the conditions fails, it signals the end of the execution of the Megablock. Consider Figure

4.3a), which contains the C code for the implementation of a max function. The function

contains a for loop with an if structure, and forms a CFG similar to the one in Figure 4.2. A

possible Megablock is formed during execution of the max function when the same path of

the “if” is taken for several consecutive iterations (e.g., every iteration after finding the

maximum value of the array).

Figure 4.3b) shows the sequence of MicroBlaze [90] assembly instructions that form the

Megablock when the current value of the array is lower or equal than the maximum value up

to that point (i.e., the expression “v[i] > mx ” returns false). This Megablock contains two

44

exit points, represented by the branch instructions of the sequence (the fourth and the seventh

instructions). The execution in the Megablock continues as long as the condition of the fourth

instruction is met (corresponds to testing if the current value of the array is lower or equal

than the maximum value up to that point), as well as the condition of the seventh instruction

(which tests the induction variable of the loop).

unsigned int max(unsigned int* v,

int n) {

 unsigned int mx=0, i;

 for (i=0; i<n; i++) {

 if (v[i] > mx) {

 mx = v[i];

 }

 }

 return mx;

}

1. 0x180 bslli r3, r4, 1026

2. 0x184 lw r3, r5, r3

3. 0x188 cmp r18, r3, r7

4. 0x18C bgeid r18, 12

5. 0x190 addik r4, r4, 1

6. 0x198 rsubk r18, r4, r6

7. 0x19C bnei r18, -28

Figure 4.3. a) C code for a max function and b) the MicroBlaze assembly code for a Megablock

representing one of the possible execution paths.

4.3 Megablock Detection

The problem of detecting a Megablock is similar to an instance of the problem of

detecting repeated substrings, e.g., xx, with x being a substring containing one or more

elements. This is also known as squares, or tandem repeats [107]. In our case, substring x is

equivalent to the previous sequence of instructions S (this can be achieved by representing

each instruction by a symbol), and represents a single iteration of a loop. Although we want to

find patterns with many repetitions (a square strictly represents only two repetitions), we

observed that if a sequence of instructions forms a square, it is likely that more x elements

will follow (e.g., xxxx…). The detection method considers that two repetitions are enough to

declare the detection of a Megablock.

Our Megablock detection approach has been focused on schemes bearing in mind its

suitability for runtime, either in the context of mapping or moving computations at runtime.

There are algorithms which can find all tandem repeats in O(n log n + z), where n is the length

of the string and z is the size of the output [108]. Another example is the use of linear time

algorithms which uses suffix trees [109]. However, these algorithms are not suited to runtime

45

Megablock detection. Algorithms which use suffix trees need to preprocess the input string.

Furthermore, as the stream of instructions is generated at a constant rate, the algorithm should

have a constant processing time for each input, to be able to keep up with the GPP.

Figure 4.4 presents the algorithm developed to meet these requirements. The algorithm

defines a priori the maximum size of the substring x (i.e., the number of pattern elements) in

the squares.

M is maximum substring size

MatchingFifo has size M

CounterArray has size M, initialized to zero

processElement(PatternElement)

 for index 1 to M

 if PatternElement equals MatchingFifo[i ndex]

 if CounterArray[index] < index

 CounterArray[index]++;

 else

 CounterArray[index] = 0;

 for index 1 to M

 if CounterArray[index] equals index

 signal match for square with substrings

 of size index

 insert PatternElement in MatchingFifo

Figure 4.4. Algorithm for detection of squares, up to a maximum size M.

It uses M counters, one for each substring size, from 1 to M, and a FIFO queue with read

access to any index, which stores the previous M elements. When a new element arrives, it is

compared with the M previous elements. The position in the FIFO of the previous element

being compared determines the size of the substring being detected. If there is a match, the

counter is incremented until the size of the substring. If there is a mismatch, the counter is

reset to zero. For each counter, if there are as many consecutive matches as the size of the

corresponding substring, a square with substrings of that size is detected. Finally, the element

is inserted in the FIFO. When the FIFO is full, the oldest value is discarded.

46

According to the algorithm, when processing a single input, there can exist 1 to M matches

for squares with different substring sizes. For instance, by feeding the pattern aaaaaa to the

algorithm, after processing the last element it will detect 3 matches, for squares with substring

sizes 1 (a), 2 (aa) and 3 (aaa), respectively.

We use an arbiter to select the most relevant match. For instance, to consider only inner

loops, the priority is given to the match with the smallest substring size; to detect patterns

with unrolled inner loops, but only when they appear inside outer loops (e.g., aabaab), the

priority is given to the match with the highest substring size, but only if there is no match of a

lower substring size simultaneously in the current and in the previous set of matches, to

prevent unrolling in cases such as aaaa.

We consider four adjustable parameters when implementing a Megablock Detector:

maximum pattern size, type of pattern unit, unrolling of inner loops and executed instructions

threshold. In the algorithm we limit a priori the maximum number of pattern elements of the

substrings that can be detected. The maximum pattern size refers to this size.

In the previous section, we indicated that the substring x is formed by one or more

elements, and that x is equivalent to sequence S of the Megablock definition. Although we

defined the elements of S (the contiguous repeated sequence) as single instructions, the

elements of substring x can be coarser than instructions, to reduce the detection problem size.

We refer to the kind of element used for detection (e.g., instruction) as the type of pattern

unit.

Different kinds of units can be used for detection, as long as the pattern unit represents a

contiguous subsequence of instructions in T (with T being the sequence of instructions that

form the execution trace). For instance, in this thesis we consider instructions, basic blocks

and fragments as possible detection units, as all of them represent a valid contiguous

subsequence (or substrings) in the execution trace. Consider the example in pseudo-code in

Figure 4.5. The Megablock ‘z’ can be formed by the instructions with addresses 10, 11, 30, 31

and 20; by the basic blocks starting with addresses 10, 30 and 20; or by the fragments B and

C.

According to the rules of the arbiter that receives the matches that happen each clock

cycle, it can give priority to smaller or larger patterns (Megablocks with less or more pattern

elements). When priority is given to larger patterns, we consider that unrolling of inner loops

is active. Otherwise, if priority is given to smaller patterns, unrolling of inner loops is not

active.

47

Figure 4.5. Program execution partitioning according to basic blocks, fragments, and Megablocks.

When a Megablock is detected, we are able to determine how many instructions the GPP

executes until the Megablock exits. The executed instructions threshold refers to the

minimum number of instructions that should be executed by the GPP (when a Megablock is

detected) so that the Megablock is considered for implementation. If the number of executed

instructions falls below the executed instructions threshold the Megablock is ignored.

4.4 Megablock Intermediate Representation

Intermediate Representations (IRs) are widely used in compilation as a way to express

code in a more convenient way for transformations, mapping, and code generation [49]. The

Megablocks are formed from instructions extracted from the execution trace of the processor

used in the target system. Those instructions can be translated to a format similar to three-

address code [49], an intermediate format commonly used when targeting GPPs. However,

this format is ill-suited for computing models with intrinsic support to high parallelism

degrees, as is usually the case with RPUs. Instead of translated to a three-address code

format, the instructions of the Megablock are transformed into a graph representation, more

akin to data-flow representations.

z

z

01: A=0

02: B=0

03: JUMP TO 20

20: IF A<5, JUMP TO 10

10: A=A+1

11: IF A<3, JUMP TO 30

30: B=B+1

31: JUMP TO 20

20: IF A<5, JUMP TO 10

10: A=A+1

11: IF A<3, JUMP TO 30

30: B=B+1

31: JUMP TO 20

20: IF A<5, JUMP TO 10

10: A=A+1

11: IF A<3, JUMP TO 30

12: IF A<5, JUMP TO 10

10: A=A+1

11: IF A<3, JUMP TO 30

12: IF A<5, JUMP TO 10

10: A=A+1

11: IF A<3, JUMP TO 30

12: IF A<5, JUMP TO 10

13: END

A=0; B=0;
while(A<5) {

A = A+1;
if(A<3) {

B=B+1;
}

}

fragmentbasic block

Megablock

Source Code Execution Trace

A

B

B

C

C

A B

0 -

0 0

0 0

0 0

1 0

1 0

1 1

1 1

1 1

2 1

2 1

2 2

2 2

2 2

3 2

3 2

3 2

4 2

4 2

4 2

5 2

5 2

5 2

5 2

D

D

E

y

y

01: A=0
02: B=0
03: JUMP TO 20
10: A=A+1
11: IF A<3, JUMP TO 30
12: IF A<5, JUMP TO 10
13: END
20: IF A<5, JUMP TO 10
30: B=B+1
31: JUMP TO 20

Assembly Code

48

The proposed intermediate representation contains two data structures: a directed graph

structure, which contains nodes and connections representing the relationship between data

and operations, as well as additional information such as exit points; and a table which maps,

for each output of the Megablock, which operation writes the last value, according to the

original sequence of instructions.

The graph representation presented herein contains four kinds of nodes: Operation, Livein,

Constant and Exit. It uses five types of connections: data, control, liveout, feedback and

exitAddress. Figure 4.6 summarizes the available node types and the possible connections

between nodes.

a) b)

c) d)

Figure 4.6. Types of nodes and possible connections in a Megablock graph.

The Operation node (see Figure 4.6a)), represents an operation of the graph (e.g., add,

sub, mul). The Constant node (see Figure 4.6b)) represents an unchangeable, literal value

(e.g., the integer value 100). The LiveIn node (see Figure 4.6c)) represents an external value

which needs to be fetched before starting the Megablock execution. The Exit node (see Figure

4.6d)) represents an exit point of the Megablock.

There are five types of connections, described below. Note that certain types of

connections include additional information represented herein with labels.

data: connections which represent the flow of data between outputs and inputs of

operations. Operation, Constant and Livein nodes can be sources of data, but the Operation

node is the only node which can be a sink of a data connection. Constant nodes are, by

definition, unchangeable and cannot be sinks. Livein and Exit nodes can receive data from

other nodes, but special types of connections are used to indicate what kind of data is being

transmitted.

Operationdata

data
control
liveout
feedback
exitAddress

Constant
data
liveout
exitAddress

Liveinfeedback
data
liveout Exit

control
liveout

exitAddress

49

We use herein a label in the format “OUT:IN ” for each data connection. OUT is the

output index of the source node and IN is the input index of the destination node. When the

source of the connection is a Livein or a Constant node, the OUT value is left blank (i.e., the

label becomes “:IN ”). For instance, in Figure 4.7 we have two Operation nodes connected

by a data connection, which indicates that the output 0 from Operation 1 connects to the input

1 of Operation 2.

Figure 4.7. A data connection between two operation nodes.

control: boolean value (represented as 0 or 1) from an Operation node which indicates if

an exit point is triggered or not. Only Exit nodes can be sinks of control connections. Each

control connection includes a label in the format “OUT”, where OUT is the output index of the

source Operation node.

liveout: data connection which represents the value for one of the outputs of the

Megablock, for a particular exit. Only Exit nodes can be sinks of liveout connections. Each

liveout connection includes a label in the format “OUT:SYSTEM_VAR”, where OUT is the

output index of the source node and SYSTEM_VAR the name of the system variable to be

updated. For instance, the name REG2 can represent the second general purpose register of

the main processor. If the source node is a Constant or a Livein node, the value of OUT is left

blank.

feedback: data connection which represents internal updates to the values which were

initially fetched before Megablock execution started. Only Livein nodes can be sinks of

feedback connections. Each feedback connection includes a label in the format “OUT”, where

OUT is the output index of the source node. If the source node is a Constant node, the value of

OUT is left blank.

exitAddress: when processing Megablocks, in most cases it is possible to calculate, before

Megablock execution, from which instruction address the processor needs to resume

execution, after an exit point of the Megablock. However, it can be the case that the address

can only be determined during Megablock execution. The exitAddress connection represents

the instruction address from where the processor resumes execution, for a particular exit.

Operation 2Operation 1
0:1

50

Only Exit nodes can be sinks of exitAddress connections. Each exitAddress connection

includes a label in the format “OUT”, where OUT is the output index of the source node.

4.5 Adapting Source Code to Megablock Detection

Megablocks can be detected in examples with control-flow in their loop bodies (causing

the existence of branch instructions), if the same path consecutively repeats during execution.

However, it can happen that no patterns ever form, due to the execution path being highly

sensitive to values of input data. Even in the case where different paths of a loop are detected

(corresponding to different Megablocks), if the paths themselves do not repeat enough times,

Megablocks will execute a low number of iterations per call, which can lead to excessive

overhead, possibly outweighing the benefit of the accelerator. This can prevent the use of

Megablocks.

In this section we propose a set of rules for transforming source code with conditional

statements into a straight-line code sequence, increasing the potential to detect better

Megablocks. This transformation is commonly known as if-conversion in the compiler

literature [29], and enables techniques such as vector-mask control, used to execute code with

conditional execution in vector processors and GPUs. The benefit from the approach

presented here is that it allows to perform if-conversion by doing source-to-source

transformations, without additions to the language (e.g., pragmas) or modifications in the

compilation tools.

4.5.1 General Definition of the Transformations

The main targets of the transformations are constructions of the type represented in Figure

4.8. We want to rewrite these sections so that the compiler writes straight-line code, as

opposed to using branching instructions.

In their most general form, the structures in Figure 4.8 can be replaced by the

corresponding structures in Figure 4.9. The equivalent code uses a mux binary operation, of

the type value mux condition, where value represents any kind of data, and condition

represents a boolean value. This operation returns value, if condition is true, or 0 if condition

is false. In a later section, we will present concrete examples on how to implement the mux

operation. The equivalent code in Figure 4.9 includes the boolean operators and, or and

negation (!).

51

if(condition) {

 a = operation;

}

if(condition) {

 a = operation 1;

} else {

 a = operation 2;

}

if(condition 1) {

 a = operation 1;

}

else if(condition 2) {

 a = operation 2;

} else {

 a = operation 3;

}

a) b) c)

Figure 4.8. Examples of the target code subject to transformation: a) single if statement; b) if-else

statement; c) a chain of if-else statements with arbitrary size.

a) a = (operation mux condition) or (a mux !condition)

b) a = (operation 1 mux condition) or (operation 2 mux !condition)

c) a = (operation 1 mux condition 1) or (operation 2 mux (condition 2

and !condition 1)) or (operation 3 mux (!condition 2 and

!condition 1))

Figure 4.9. Equivalent code when applying if-conversion to a) single if statement; b) if-else statement;

c) a chain of if-else statements with arbitrary size.

Each case can extend the examples of Figure 4.8 to have any statements as necessary, and

the case in Figure 4.8c) can be extended to have as many conditions as necessary.

These transformations remove the branches because they force the loop, during each

iteration, to execute the instructions of all paths (as opposed to execute only the instructions

of a particular path). As such, when executing the transformed code in the GPP alone, the

functionality is maintained, but generally the execution time will increase. However, when

executing the transformed program in a system with support for dynamic partitioning, moving

the new found Megablocks to an RPU can reduce the execution time, when compared to the

original, unmodified program.

4.5.2 C Transformations Targeting the MicroBlaze Processor

Since we are neither modifying the source code language specification nor the compilation

tools, the implementation of the technique is dependent on the target environment, and needs

to be adapted to each particular case. In this section we provide transformation examples

52

when considering C as the source language, and targeting the MicroBlaze processor with the

mb-gcc 4.1.2 compiler. Figure 4.10 shows how to calculate the term condition for the example

a cond b , where cond is a comparison operator (i.e., >, <, >=, <=, == or !=). The

transformation relies on the compiler resolving the condition to a boolean value without

having to use branch instructions. This happened consistently in the tested cases when the

comparison was done between a variable and zero. If the comparison with zero is done with

an expression, instead of a variable, the compiler still uses branch instructions in some cases

(e.g., when using expressions with more than one variable).

a) temp = a-b;

condition = temp cond 0;

b) asm("cmp %0,%1,%2": "=r" (temp): "r" (b), "r" (a));

condition = temp cond 0;

Figure 4.10. How to calculate the term condition in C using a) plain C and b) inline assembly, when

targeting the MicroBlaze processor.

The example in Figure 4.10a) works when the values of a and b are signed values, and

their values are such that during the subtraction an overflow/underflow never occurs. For a

general case, we use the example in Figure 4.10b), which inserts the MicroBlaze assembly

instruction cmp (cmpu when the comparison is between unsigned values).

Figure 4.11 shows the expression in Figure 4.9a) using two possible implementations of

the mux operation written in C. The most straightforward implementation is to implement the

operations as a multiplication (see Figure 4.11a)). However, multiplication may become too

expensive to be used if there are many mux operations in the transformed code.

a) a = (operation × condition) | (a × !condition);

b) condition = ~condition + 1;

a = (operation & condition) | (a & ~condition);

Figure 4.11. Applying if-conversion to a single if statement in C, when the mux operator is a) a

multiplication and b) a logical or.

Figure 4.11b) transforms the term condition, by inverting it and adding one. If the value of

the term is zero, this transformation returns zero. However, if the value is one, the

53

transformation will set to one all bits of the term. After the transformation we can use the

bitwise and operator (&) instead of a multiplication. Notice that now the bitwise not operation

(~) is used, instead of the logical not operation (!).

The second approach seems to be more indicated for hardware implementation, as it uses

simpler operations. However, it can result in a longer critical path when compared with the

first approach, depending of the latency of the multiplication. Additionally, if after obtaining

the intermediate representation graph we can detect that one of the operands of the

multiplication is a boolean value (0 or 1), we can modify the graph and replace the

multiplication by a mux operation (see the mul. to mux. transformation, described in Section

5.1.4).

4.6 Summary

In this chapter we described the Megablock, the loop structure we propose for moving

instructions from a GPP to an RPU. We presented the characteristics we find desirable when

selecting a portion of code to move to the RPU and suggested the Megablock as a candidate.

When comparing to the partitioning approaches presented in Chapter 3 (see Table 3.1), the

Megablock differs from them as it represents repetitive patterns of code in the trace of the

executing program, possibly representing a loop in the original code. For small loops, we

expect the instructions covered by Megablocks to be on par to the instructions covered by the

partitioning method of the Warp processor [13] (the other approach which considers loops).

However, the Megablock has the potential to include nested loops, recursive calls, and loops

formed with irregular constructions such as gotos. In addition, as the Megablock is built using

segments of instructions forming an execution path, it allows for dynamic optimizations

aware of information known during runtime, as opposed to approaches which rely only on the

static structure of the code.

We presented an algorithm for Megablock detection, with suitable characteristics for

runtime application, and suggested a graph intermediate representation for the Megablocks.

Finally, we proposed a methodology which can be used to increase the quality of detected

Megablocks without modifying the compilation tool flow, by applying source-to-source

transformations.

55

5 Transforming and Implementing
Megablocks

This chapter presents practical aspects related to the implementation of Megablocks.

It explains how to build the Intermediate Representation (IR) introduced in the previous

chapter, and proposes a set of transformations which can be applied over the IR.

The Detection of Megablocks can be done offline, during a profile phase. However,

even in that case, for dynamic partitioning we need a method to identify these

previously detected Megablocks at runtime, when the application executes. We propose

two methods for runtime Megablock Identification, Single Address Identification (SAI)

and Megablock Signature Identification (MSI).

We present several architecture models capable of implementing Megablocks, and

explain how we can augment a Megablock-enabled architecture to support pipelining of

Megablocks.

5.1 Graph Transformations

This section explains how to transform assembly instructions, such as the ones used

by the MicroBlaze processor, into the IR presented in Section 4.4. Before mapping

segments of executed instructions such as the Megablocks to a coprocessor, we can

apply several transformations over the segments, e.g., to expose more ILP, and/or to

reduce the number of instructions to map.

5.1.1 Mapping MicroBlaze Assembly to Graph IR

As in the experiments we use the MicroBlaze processor [90] as the target GPP, the

examples in this section show how to convert a Megablock formed by MicroBlaze

assembly instructions into the graph IR. Note, however, that a similar approach can be

applied to other processors.

The first step is to extract information from each MicroBlaze instruction in the

Megablock. For each instruction, we store information about the instruction address, the

operation to be performed (i.e., opcode) and its operands. For each operand, it is

56

determined if it is an input or an output, the type (i.e., register or constant), and a label.

If the operand is a constant, the label contains its literal value; if the operand represents

a register, the label identifies the register.

Table 5.1 presents additional information extracted from the sequence of

instructions, used during the construction of the graph.

Variable Description

BranchTaken
If instruction represents a branch/jump, indicates if the branch/jump is taken or not

during Megablock execution.

IsExit
Indicates if the instruction represents an exit point in the sequence of instructions

(takes delay slots into account).

NextAddress
The address of the next instruction that will be executed in the sequence. If

instruction is a branch/jump, indicates the address after delay slots.

NoJumpAddress
The address of the next instruction. If the current instruction is a branch/jump,

indicates the address after delay slots, considering that the branch/jump is not taken.

Table 5.1. Additional information acquired from the instructions in the Megablock sequence.

After all information is collected, the graph can be built by considering the

instructions according to the Megablock sequence. Each instruction can originate zero,

one or more graph nodes. For instance, the MicroBlaze instructions do not allow to

represent 32-bit constant values in a single instruction (the maximum is 16-bits). The

instruction imm is used to indicate the 16 upper bits of a 32 bits constant [90] in the next

instruction. The imm instructions are not translated to operations, but its information is

used to directly create 32-bit values in the intermediate representation. The other case

where instructions do not generate an operation is when an instruction is detected to be

a nop, (“or R0, R0, R0” is a default nop instruction in the MicroBlaze processor).

Most instructions generate one equivalent operation. Load/store instructions and

some jump/branch instructions are exceptions. Load/store instructions are unfolded into

an addition, which sums a base address with the offset, and a load/store operation.

For most jump/branch instructions, the information from the sequence of

instructions in the Megablock is sufficient to calculate the destination address of the

jump/branch. However, in some cases (e.g., instruction rtsd) the destination address

depends on the runtime value stored in a register and needs to be calculated during the

execution of the Megablock. In this case, the branch/jump instruction is unfolded into a

comparison operation, which will test the exit point, and an addition which calculates

the destination address.

57

With the above information it is possible to build a graph with information about the

data connections between operations, and add the exit points of the graph. After all

instructions are processed, the feedback connections (Section 4.4) are added to the

graph. Finally, we build a table with information about which operations write the

output values of the Megablock.

5.1.2 Constant Folding and Propagation

One possible transformation is Constant Folding and Propagation (CFP). With CFP,

operations with only constants as inputs, or using registers whose values are determined

as constants, are replaced by the result of the operation. This transformation can be

applied to every operation node, and each operation node defines its own rules on how

it should behave in the presence of constant inputs. For instance, arithmetic and logic

operations (e.g., add, sub, and, xor) use the arithmetic and logic rules that correspond to

their operation.

CFP is extended to other types of operations, such as the comparisons which control

the exit points. If an exit point has constant operands, it can be determined that the

alternative path represented by the exit will never be taken (e.g., exits created from

branches which represent calls to/returns from functions). In such cases, the operation

node and the exit point can be removed. This is how CFP, applied to Megablocks, can

remove operations related to function calls.

Connections of the type feedback originate from operation nodes, but can only

connect to nodes of the type LiveIn, which represent input values to be read before

Megablock execution. If an operation replaced by the CFP has a feedback connection as

output, the input Livein at the end of the connection can also be replaced by a constant

value, removing an input value from the Megablock. Since LiveIn nodes represent

inputs of the Megablock, CFP can propagate the constant value transmitted by the

feedback connection by performing another pass over the nodes of the graph, and this

step can be repeated every time new Livein nodes are replaced by constant values at the

end of the pass. We named this step as Multi-Pass CFP.

Multi-Pass CFP cannot be always applied. The graph transformed by this technique

assumes that when the Megablock starts executing, the GPP has previously executed at

least as many iterations of the Megablock as passes performed by the CFP (to guarantee

58

that the LiveIn nodes have the input values calculated by CFP). This can be enforced or

not, depending on the identification method used (see Section 5.4).

5.1.3 Identity Simplifications

Another transformation applied is Identity Simplification. It takes advantage of the

identity property of some operations. Opportunities to apply this transformation can

appear in graphs created from assembly instructions since it is common for compilers to

use the identity property to implement attributions in assembly. For instance, a high

level instruction such as a = 10 can be implemented with an add instruction such as

add r4, 10, 0 .

5.1.4 Multiplication to Multiplexer

The Multiplication to Multiplexer (Mul to Mux) transformation, with an example

illustrated in Figure 5.1, is a form of strength reduction, where an expensive operation is

replaced with an equivalent, less expensive operation. When we determine that one of

the operands of a multiplication can only have the values 0 or 1, the multiplication can

be safely replaced by a multiplexer, which chooses between the value 0 and the other

operand. Opportunities for this transformation can appear when if-conversion is applied

to the source code (Section 4.5).

a) b)

Figure 5.1. Mul To Mux transformation: a) graph before the transformation is applied; b) graph

after the transformation.

5.2 Hardware Module for Megablock Detection

Figure 5.2 presents a hardware solution for Megablock detection, when using basic

blocks as the detection unit. It has three main modules: the Basic Block Detector reads

1:mul

2:add

0 or 1 input 1

input 2 1:mux

2:add

0 or 10 input 1

input 2

59

the instructions executed by the processor, and detects which instructions correspond to

the beginning of basic blocks. It outputs the instruction addresses corresponding to the

beginning of basic blocks (signal BB_address), and a flag which indicates if the current

instruction is the beginning of the basic block (signal is_BB_address).

Figure 5.2. Hardware solution for Megablock detection.

The Megablock Detector receives pattern elements, which in this case is the first

address of basic blocks. It outputs the size of the current pattern, or zero if no pattern is

detected (signal pattern_size), and a control signal indicating the current state of the

detector (signal pattern_state).

The module Trace Buffer is a memory that, when Megablock detection is active

(i.e., the module is currently looking for Megablocks), stores the last instructions

executed by the processor, their corresponding addresses, and a flag which indicates if

the instruction corresponds to a pattern element of the Megablock (e.g., the start of a

basic block). After a Megablock is detected, the Trace Buffer stops storing executed

instructions and can be used to retrieve the detected Megablock.

Figure 5.3 presents the general diagram for the Megablock Detector. It contains

three modules: the Squares Detector finds patterns of squares according to the

algorithm presented in Section 4.3. It receives pattern elements and detects squares of

size one up to a maximum, using as output a flag for each square size

(pattern_of_size_X).

0 or 1

Basic Block
Detector

Megablock
Detector

Trace
Buffer

is_BB_address
B

B
_a

dd
re

ss

pattern_size

pattern_state

Address + Instruction

60

A pattern element can trigger one or more square sizes. The module Pattern Size

Arbiter & Encoder receives the individual pattern_of_size_X flags, chooses which

pattern size should be given priority and encodes the chosen size into a binary string.

For instance, when detecting only inner loops, this module can be implemented as a

priority encoder.

Figure 5.3. Diagram for the Megablock Detector.

The module Pattern State is a state machine which indicates the current state of the

pattern, and can have one of five values: Pattern_Started, Pattern_Stopped,

Pattern_Changed_Sizes, Pattern_Unchanged and No_Pattern.

Figure 5.4 presents the block diagram for a hardware implementation of the Squares

Detector. The architecture in the figure can detect squares from size 1 up to 3, and can

be easily extended to support larger square sizes. In the implementation presented here,

the pattern_element signal corresponds to an instruction address.

Each detector for a specific square size (with exception of the detector for size one)

uses a FIFO. When FIFOs have a reset signal they are usually implemented in hardware

using Flip-Flops (FFs), becoming relatively expensive (a FIFO needs a number of FFs

equal to the #bits × size of FIFO). However, if it is not necessary to access the

intermediate values of FIFOs, they can be implemented with considerably less

resources (e.g., if an FPGA has primitives for shift registers available). When using

such FIFOs, the reduction factor in resources can be as high as 16 and 32 (e.g., when

using the primitives SRL16 and SLR32 in Xilinx FPGAs, respectively) sizes [110, 111].

Squares Detector

Pattern Size Arbiter &
Encoder

Pattern State

0
or

 1

pattern_of_size_X

pattern_size

pattern_state

...

pattern_element

61

Figure 5.4. Diagram for a hardware implementation of the Squares Detector.

5.3 Megablock Translation using the Graph IR

Figure 5.5 presents a possible chain of steps for the Translation phase, where a set

of assembly instructions representing a Megablock (e.g., the output of the Megablock

Detector in Section 5.2) is transformed to an RPU configuration.

Figure 5.5. Possible chain of steps in a Translation phase.

Depending on the implementation, the chain of steps can be done during program

execution (i.e., online), before program execution (i.e., offline) or in a mixed

environment (i.e. a number of initial steps of the chain are done offline, and the

remaining online). Likewise, each step in the chain can be implemented as a dedicated

hardware module, or as a software program. For instance, in the implementation of a

dynamic partitioning system presented in Appendix A, all the steps of the Translation

chain are done offline and implemented in software.

Megablock implementations usually depend on the Megablock execution starting at

a particular instruction, the start instruction. The step Normalize decides which

pattern_element
FF FF FF FF

Test Detector of Patterns of
Size 1

Detector of Patterns of
Size 2

Detector of Patterns of
Size 3

CMP

0 or 1

CMP

0 or 1

CMP

0 or 1

FIFO FIFOReset
pattern_of_size_1

Reset

pattern_of_size_2

pattern_of_size_3

Normalize
Graph

Converter
Transform Map

RPU
Config

Megablock
ASM

Megablock
ASM

Megablock
Graph IR

Megablock
Graph IR

62

instruction of the Megablock is the start instruction. This step receives the assembly

representation of the Megablock as input, and decides which instruction is considered as

the start instruction.

Due to its repetitive nature, virtually any instruction of the Megablock can be used

as the start instruction. In this work, we have used the following algorithm to calculate

the start instruction: considering only instructions that correspond to pattern elements

(e.g., first instruction of basic blocks), chose the one with lowest address, which is

unique in the Megablock. If we cannot find a start instruction for a particular

Megablock (e.g., all addresses appear more than one time, when considering the

previous algorithm), the Megablock is not considered for mapping.

The step Graph Converter transforms the assembly representation of the Megablock

into the graph intermediate representation (e.g., Section 5.1.1). The output of this step is

a Megablock represented as a graph (i.e. the Megablock Graph). The step Transform

applies transformations over the graph representation (e.g., Section 5.1.2 to Section

5.1.4). The output of this step is the graph representation of the Megablock, after

applying transformations.

Finally, the step Map converts the graph representation into a configuration for the

target coprocessor. The implementation of this step is highly dependent of the target

architecture. In this section, we present a map algorithm which can be used for the

architectures in Section 5.5.1 and Section 5.5.4. The mapping algorithm is divided in

two parts, placement and routing.

Our placement algorithm has three steps, buildDistanceGraph, addDependencies

and rearrangeGraph. Placement uses another graph representation of the Megablock,

the Distance Graph, which can be built from a Megablock graph. The Distance Graph

differs from the Megablock Graph in the following aspects: the placement takes into

account timing constraints, so each node includes the latency of the operation it

represents; since the graph is to be used to calculate the placement in architectures

which can time-multiplex a design through several configurations, each node also

includes information about the current configuration (i.e., configuration level) assigned

to it (in row-based architectures, each configuration represents a row). Each connection

between a source/sink node in a Distance Graph includes an additional parameter,

minimum distance, which represents the minimum number of levels (i.e., rows) between

two nodes (this value is usually dictated by the latency of the source node).

63

The first step of placement (buildDistanceGraph) is to build the Distance Graph

from the Megablock Graph. Based on the latencies of each operation, to each node is

assigned an initial configuration level which respect those latencies. At this point, the

Distance Graph only has data connections. The second step (addDependencies) adds

connections which represent dependencies between nodes (for instance, to serialize

writes to memory, one can add connections between each store operation, representing

the dependency). After including the dependency connections, the configuration level

assigned to some operations may no longer be valid. We then apply the third step,

rearrangeGraph, whose algorithm is represented in Figure 5.6. The function changes

the configuration level values of each node so that they respect the existing connections

and the given architecture constraints (e.g., the maximum number of memory operations

per level/row).

“Constraints” contains architecture constraints

rearrangeGraph(DistanceGraph)

 CurrentLevel = 0

 while CurrentLevel <= getMaximumLevel(DistanceGraph)

 LevelNodes = getNodesFromLevel(DistanceGraph, CurrentLevel)

 NodesToMove = getNodesToMoveDown(LevelNodes, Constraints)

 for each Node in NodesToMove

 setLevel(Node, CurrentLevel+1)

 rearrangeNode(Node)

 CurrentLevel++;

Figure 5.6. Algorithm for the function rearrangeGraph.

The algorithm starts at the topmost level, and iterates over each level until there are

no more levels. In each level, the nodes of that level are identified (getNodesFromLevel)

and tested (getNodesToMoveDown). During the test, the nodes that do not respect the

minimum distance indicated in the connections to their parents go immediately to the

NodeToMove list. The remaining nodes are tested for architecture constraints. If there

are not enough resources in the level/row for the remaining nodes, the outstanding

nodes are added to the NodeToMove list. An algorithm can decide which nodes should

64

go to the list, and which nodes should stay in the level/row. The current implementation

uses a first-come, first-served approach.

After deciding which nodes should stay on the current level/row, the other nodes are

moved to the level/row below and each node is rearranged individually. Figure 5.7

presents the algorithm for the function rearrangeNode. When a given node does not

respect the minimum distance between itself and a parent node, the node is pushed

down until it reaches a valid position. After achieving a level which is valid to all parent

nodes, the algorithm is recursively applied to the children nodes.

rearrangeNode(Node)

 for each ParentNode in Node

 NodeLevel = getLevel(Node)

 MinimumDistance = getMinDistance(ParentNode, Node)

 if NodeLevel < MinimumDistance

 NewLevel = getLevel(ParentNode) + MinimumD istance

 setLevel(Node, NewLevel)

Figure 5.7. Algorithm for the function rearrangeNode.

For instance, consider the example in Figure 5.8. It represents a DistanceGraph

created from a Megablock graph, after the first step in the placement algorithm. To each

node was given an initial placement. The connections in the figure include the

respective MinimumDistance. After adding node dependencies, the connection from the

node in level 1 to the node op makes the placement of the latter invalid (underscored

distance). Applying the rearrangeNode function to the node op, it is moved to level 3

(parent level (1) + minimum distance (2)). Since all connections from parents to op are

valid, rearrangeNode is applied to all children of op.

After obtaining a valid placement for all nodes, the route algorithm presented in

Figure 5.9 calculates the connections between nodes, and uses pass-through registers to

communicate values between distant levels. It has one parameter, MaxCommDistance,

which represents the maximum communication distance between levels/rows. A value

of zero indicates an architecture which can only communicate between adjacent

levels/rows.

65

Figure 5.8. Example of the function rearrangeNode

route(DistanceGraph)

 for each Node in DistanceGraph

 for each ChildNode with data connection in Node

 NodeLatency = getLatency(Node)

 Distance = getLevel(ChildNode) – NodelLeve l - NodeLatency

 if(Distance<=MaxCommDistace)

 addDirectConnection(Node, ChildNode)

 else

 usePassthrough(Node, Distance)

 MaxLevel = getMaximumLevel(DistanceGraph)

 for each OutputRegister in DistanceGraph

 OutputNode = getOutputNode(OutputRegister)

 NodeLatency = getLatency(OutputNode)

 Distance = MaxLevel – getLevel(OutputNode) - NodeLatency + 1

 usePassthrough(OutputNode, Distance)

Figure 5.9. Routing algorithm in the Map step.

5.4 Megablock Identification

After a Megablock has been detected for the first time, one can identify future calls

to the same Megablock in the instruction trace. We propose two techniques for

Identification of previously detected Megablocks: Single Address Identification (SAI)

and Megablock Signature Identification (MSI).

op

1

2

3

4

Le
ve

l
1 2

11

op

1

2

11
op

1

2

11

66

SAI uses the address of the start instruction of the Megablock as the identifier.

Megablocks are identified by examining the execution trace of the GPP, looking for the

instruction address that matches the address of the start instruction assigned to the

Megablock. As the Megablock identification with SAI is done just by examining a

single address of the execution trace, there is no guarantee that the Megablock is

executing when the address is detected.

MSI relies on using the Megablock instructions and their corresponding addresses to

build a signature which uniquely identifies a Megablock. After identifying a signature,

the method needs a synchronization period where it waits until the GPP executes the

instruction which corresponds to the start address of the identified Megablock.

To build the signature, we can use any function which can generate a unique

identification from the instructions and/or the addresses of the Megablock. For instance,

we can use a hash function over the start address of each unit that forms the Megablock

although, depending on the function used, the signature can be dependent on the start

address of the Megablock (i.e., the result of the function is different depending on the

start element of the sequence). To avoid this, we need to use a function which generates

a signature from a list of inputs but whose result does not depend on which input is used

as start. For instance, a sum of all individual addresses of the Megablock units respects

this requirement. However, since the unit addresses are values which can be close to

each other, it is common for this function to result in a high number of collisions. An

alternative solution is to pass each address through a hash function [112], to introduce

variation in the inputs, and sum all results.

Table 5.2 resumes most important characteristics of both methods. As in SAI the

identification corresponds to the address of the start instruction of the Megablock, we

cannot identify different Megablocks with the same start address as we would not be

able to distinguish between them. Identification in MSI is decoupled from the address of

the start instruction, and several Megablocks can have the same address. We can work

around this limitation in SAI if the heuristic that assigns the start addresses takes into

account which addresses have been used for previously detected Megablocks.

However, MSI needs to detect if the Megablock is executing before identifying it

(for instance, with the help of the hardware module for Megablock detection introduced

in Section 5.2). This introduces latency, as we need the Megablock to execute at least

two iterations before it can be identified. And after identification, we need to

67

synchronize the execution, which can take up to a single iteration. SAI can identify a

candidate at the moment the GPP asks its start instruction, although it is more prone to

false positives.

Constant propagation with multiple passes assumes that the Megablock currently

executing has run for at least as many iteration as the number of passes applied. As with

SAI we do not have that guarantee, we can only use single pass constant propagation.

Characteristic SAI MSI

Identification Start address of the Megablock Signature made from several
addresses

Address of Start Instruction
Same as identification. Only one

Megablock for each address

Independent of identification.
Multiple Megablocks can use the

same address

Latency between Megablock
identification and execution

No latency At least 2 iterations

Constant Propagation Single pass only Up to multiple passes

Table 5.2. Characteristics of the proposed Megablock identification methods: SAI and MSI.

A possible implementation can use either method for identification of Megablocks,

or include both methods. For instance, an implementation can use SAI as the default

identification method, and use MSI when SAI is not able to identify a Megablock (e.g.,

when two Megablocks have the same start instruction).

5.5 Architectures for Implementing Megablocks

According to the coupling taxonomy presented in Figure 2.3 of Section 2.5, we

present two general system architectures for implementing Megablocks. Figure 5.10a)

shows an architecture with an RPU connected to the local bus, were all modules

communicate through the same local bus. Figure 5.10b) shows an RPU coupled to the

GPP. In this case all communication is done through dedicated channels. We do not

consider the coupling in Figure 2.3a), an RPU coupled to the I/O bus, since we think it

is very similar in implementation to the case in Figure 2.3b) but with potentially higher

latency. We also do not consider the coupling in Figure 2.3d). We think the needed

degree of integration of the RPU with the GPP is unsuitable for implementing

Megablocks.

In both architectures we have a GPP, which will run the program, and an RPU

which will execute the Megablocks. In Figure 5.10a), we consider that the GPP fetches

68

instructions through the local bus and that those instructions are intercepted by the

Dynamic Partitioning module.

a) RPU coupled to a local bus

b) RPU coupled to the CPU

Figure 5.10. General system architectures for Megablock implementation.

The job of the Dynamic Partitioning module is to identify Megablocks in the

instruction stream and handle the communication routines which exchange data between

the GPP and the RPU. The module is also responsible for reconfiguring and starting the

execution of the RPU and stall the GPP. The architecture of Figure 5.10b) is equivalent,

but uses dedicated connections instead of a bus.

Equation (5.1) presents the general equation for estimating the overall speedup

achieved by the architectures when using the RPU. CPUCy represents the clock cycles

executed by the program when using only the GPP. The denominator of the equation

considers the execution with the GPP and the RPU and divides the execution clock

cycles into two parts: the cycles that belong to all calls to Megablocks (MbCallCy) and

the cycles which are executed by the GPP (CPU-SeqCy). Equation (5.2) represents the

clock cycles taken by a single call to a Megablock. The terms of these equations are

GPP

Memory
Dynamic

Partitioning

RPU

Local Bus

GPPRPU

Data Memory
Instructions

Memory

Dynamic
Partitioning

69

defined according to the specific implementations of the architectures of the system and

RPU.

 Speedup =
CPUCy

∑MbCallCy + CPU-SeqCy

 (5.1)

 MbCallCy = RPUCy + OverheadCy (5.2)

5.5.1 General 2D CGRA

There have been several work efforts [14, 27] which transparently move

computations from a GPP to a CGRA coprocessor with a 2D topology, as the one

presented in Figure 5.11. Row-based CGRAs with forward communication have been

used as targets for GPP computation [14, 113]. They use a simple communication

scheme that significantly simplifies the routing phase.

Figure 5.11 shows the general architecture for a 2D RPU which can be used to

implement Megablocks. It consists of a reconfigurable array with K rows of FUs

(Functional Units) and forward communication between rows. The architecture contains

an Iteration Control module, which will stop the RPU execution if an exit condition is

activated. The FUs which can communicate with the Iteration Control module can be

used to implement the operations that signal exits. The last row of the RPU is a row of

output registers, which are updated with the iteration results if no exit signal is active.

These registers are connected to the first row of FUs, which can use the results of the

completed iteration in the next iteration.

This architecture executes the iterations of the Megablock atomically. If an iteration

completes (i.e., there are no active exit signals after the execution of the last row) the

results are committed to the Output Registers. Otherwise, the results of that iteration are

discarded and execution in the RPU stops. Atomic iterations imply that when an exit

point is activated during an iteration, the iteration is discarded and execution continues

in the GPP at the beginning of the discarded iteration.

Before transferring execution to the GPP, the state of the system needs to return to

the beginning of the last iteration. For instance, if all changes during RPU execution are

restricted to internal communication inside the RPU, the state of the system is contained

in the values of the Output Registers, which can be updated only if an iteration

completes successfully. When an iteration fails, the values of Output Registers, which

70

currently have the results of the previous iteration, are not updated by the last iteration.

These are the results communicated to the GPP. However, if the RPU changes the state

of a memory, any change that occurred in the last iteration has to be reverted, which can

imply a memory rollback mechanism.

Figure 5.11. General architecture for a 2D CGRA-based RPU which supports Megablocks.

On the other hand, when iterations are atomic the architecture only needs to keep

track of a set of output values, instead of a set per possible exit point. Furthermore, there

are fewer restrictions when mapping the Megablock, the tools only need to ensure the

results at the end of the iteration without the need to guarantee intermediate results; and

when the execution returns to the processor, the instruction address where execution

resumes is always the same, the address of the instruction that corresponds to the

beginning of the Megablock iteration.

Equations (5.3) and (5.4) define the terms of the speedup equation (5.2) for the case

were we model the latency in clock cycles. When an RPU based on the general 2D

CGRA architecture is coupled to the system architectures presented in Figure 5.10.

They represent the clock cycles needed for a single call to the RPU.

In equations (5.3) and (5.4), NIt is the number of iterations completed by the RPU.

As iterations are executed atomically, the iteration where the exit point is activated will

always be executed and discarded, which adds to the number of completed iterations.

ItCy is the number of clock cycles the RPU needs to complete an iteration. For instance,

LD/ST
1

LD/ST
M

FU 1 FU 2

Interconnect

FU N

Interconnect

R
ow

 K

Output Registers

Row K-1
Iteration C

ontrol

Exit Condition

Write Enable

C
onfiguration B

its

R
ow

 1

71

if each row of the RPU takes one cycle to execute, the term corresponds without

pipelining to the number of mapped rows. CommunicationCy represents the clock cycles

needed to communicate data to and from the RPU. It includes the communication of the

values between the GPP and the RPU, as well as the RPU configuration bits.

PartitionerCy corresponds to the additional clock cycles needed by the dynamic

partitioning system besides communication. Finally, since the parameter CPU-SeqCy in

equation (5.1) does not consider any part of the loop execution and we are considering

an atomic execution of the iterations, the analytical model needs the parameter

LastIterationInGppCy, which represents the GPP clock cycles needed to execute the

incomplete iteration discarded by the RPU.

 RPUCy = �NIt + 1� × ItCy (5.3)

 OverheadCy = CommunicationCy + PartitionerCy

+ LastIterationInGppCy
(5.4)

5.5.2 Specialized Array (SAr)

Megablocks can be translated to HDL descriptions and then synthesized to a

reconfigurable fabric. Similar techniques have been previously used, for both offline

and online scenarios. Kuzmanov et al. [114] extract kernels from an executable during a

profiling phase. Those kernels are then processed and transformed offline into hardware

descriptions and implemented using tools for FPGA-based hardware synthesis. The

hardware implementations are then available during the execution of the program.

Approaches such as Warp [13] propose an online hardware generation scheme which

uses custom synthesis tools and custom reconfigurable fabrics.

Based on the general architecture for a 2D CGRA supporting Megablocks, depicted

in Figure 5.11, we propose the Specialized Array (SAr), a specialization of the

architecture for a single Megablock. Figure 5.12 presents two instances of the SAr for

two different hypothetical Megablocks. Since the architecture only executes one

Megablock, the functionality is fixed and does not have configuration bits. In the

examples in Figure 5.12, the FUs are replaced by implementations of the Megablock

operations, and the configurable interconnection resources are replaced by direct

connections. Note that, depending on the implementation, the direct connections can

72

either be simple wires, or have FIFOs for synchronization of results. The execution is

similar to what was described for the 2D CGRA general architecture in Figure 5.11. The

iterations are executed atomically, and when the output of each operation is registered,

the execution cycles of the SAr and the overhead are given by equations (5.3) and (5.4).

a) b)

Figure 5.12. Two possible SAr instances for two distinct Megablocks.

5.5.3 Specialized Reconfigurable Array (SRA)

In the previous approach, a specialized module is created for each Megablock.

However, as Megablocks are specific to a single program, and for any given program

just one Megablock is executing at a time, only one of the hardware modules will be

active at any given time. The Specialized Reconfigurable Array (SRA) merges

individual Megablock implementations into a single runtime reconfigurable array. At

any given time, the SRA can only execute one Megablock, but it can be reconfigured at

runtime to execute any of the Megablocks it implements. The objective is to reduce

resource usage and reconfiguration time (when compared with the general 2D CGRA)

while providing an RPU with runtime reconfigurability (a validation of this approach is

presented in Appendix A).

add add

sub

equal
zero

xor

Input Registers

Output Registers

Iteration C
ontrol

Write Enable

Exit Condition

add and

or

equal
zero

Input Registers

Output Registers

Iteration C
ontrol

Write Enable

Exit Condition

73

Figure 5.13 presents an instance of the SRA implementing the Megablocks depicted

in Figure 5.12. The connections can be configured, according to the active Megablock.

An implementation of this architecture can use direct connections for communication,

as the SAr architecture example (presented in Figure 5.12), allowing several input wires

to be multiplexed in the input ports of shared FUs. An alternative implementation can

forward communication between adjacent rows (see Figure 5.13), using FUs to bypass

values across rows (bypass FUs). The FUs marked with a “+” are reused between the

Megablock configurations considered in this case. The execution clock cycles of the

SRA and the overhead can be estimated with equations (5.3) and (5.4).

Figure 5.13. SRA instance for two hypothetical Megablocks.

5.5.4 Folded CGRA (1D CGRA)

For Megablocks with many operations (e.g., several hundreds), it can be impractical

to implement all operations at the same time in hardware. The Folded CGRA (Figure

5.14) is composed of a single row of reconfigurable FUs and multiplexes the execution

of each row over time. If the Folded CGRA is capable of changing its configuration

add add

Input Registers

and

Interconnect

sub pass or

Interconnect

equal
zero

xor pass

Interconnect

Output Registers

+

+

+

Iteration C
ontrol

Write Enable

Exit Condition

C
onfiguration B

its

74

every clock cycle, and one does not consider pipelining, its execution becomes

equivalent to a general 2D CGRA (see Section 5.5.1) and can use the same equations

for modeling.

A Folded CGRA can be useful for a resource-constrained environment, when

compared with the previous architectures, and it is an adequate option for implementing

large Megablocks.

Figure 5.14. General architecture for a Folded CGRA-based RPU which supports Megablocks.

5.6 Megablock Pipelining

When mapping loops to 2D CGRAs, one can significantly improve performance

(throughput and latency) by pipelining the iterations of the loop [48, 103, 104]. The

main idea is to overlap consecutive loop iterations while preserving data-dependences

and resource constraints. There are several ways to pipeline loops. The compiler

community, which traditionally addressed GPPs, uses software pipelining techniques

[49], being modulo scheduling [103] one of the possible schemes. In the context of

hardware synthesis (e.g., high-level synthesis) loop pipelining is also known as loop

folding [115] and it has been addressed by several authors (see, [48, 104], just to name a

few). To the best of our knowledge, most approaches use the iterative modulo

scheduling algorithm proposed by Rau [103]. As with typical loops, Megablocks can

also be accelerated by pipelining their iterations.

In this section we present a technique to pipeline the iterations of Megablocks. The

technique moves inter-iteration dependencies from the Megablock body to a separate

module (i.e., the Input Module). The Megablock kernel becomes a data-flow graph

which can be fully pipelined. The input module is not pipelined and is responsible for

LD/ST
1

LD/ST
M

FU 1 FU 2

Interconnect

FU N

R
ow

 1

Output
Registers

Iteration
ControlExit Condition

Write Enable

C
onfiguration B

its

75

feeding the Megablock kernel. We present a study of expected performance gains after

applying this pipelining technique through estimation models, and suggest hardware

extensions which enable Megablock pipelining in row-based 2D CGRAs (see Figure

5.11), as well as specialized architectures, such as the SAr (see Section 5.5.2).

5.6.1 Inter-Iteration Dependencies

The data dependencies [29] in Megablocks can be grouped into two types: direct and

indirect dependencies. Direct dependencies are data dependencies between operations

which are explicitly represented in the Megablock. They are exposed in the Megablock

graph representation by data connections. Feedback connections are data connections

between values of different iterations, and represent direct inter-iteration dependencies.

Indirect dependencies are not explicitly represented, and usually correspond to

operations which manipulate data in a medium external to the processor (e.g., memory

accesses).

To pipeline Megablocks, we propose a technique that is capable of handling direct

inter-iteration dependencies, by moving them to outside of the Megablock body, and

that can be applied to Megablock without indirect inter-iteration dependencies.

Consider the C code for the function vecsum in Figure 5.15, which sums the

elements of an array. Figure 5.16 shows the repeating pattern of a Megablock found in

the execution trace in a MicroBlaze processor [90] of a program which uses the function

vecsum, and Figure 5.17 represents the same Megablock as a graph, according to the

representation introduced in Chapter 4, Section 4.4. The addk MicroBlaze instruction

with address 18C adds the contents of register 3 to the contents of register 4, and stores

the results back to register 3. The next instruction, a sw instruction with address 190, is

a store operation. It sums the contents of register 7 with the contents of register 9, and

the result is the memory address where the content of register 3 will be stored. As the

previous instruction alters the content of register 3, which is needed by this sw

instruction, there is a direct dependency between these two instructions, on the content

of register 3. This dependency is represented in the Megablock graph representation as a

data connection between the node 5:add and 7:store.

The first instruction, the lw instruction with address 180, reads the contents of

register 9. As this register was lastly written by the addik instruction with address 19C

in the previous iteration, there is a direct inter-iteration dependency between these two

76

instructions. This dependency is represented in the graph as a feedback connection

between the node 10:add and the input node r9 (input).

void vecsum(int* A, int* B, int* C, int n)

{

 int i;

 for(i = 0; i < n; i++) {

 C[i] = A[i] + B[i];

 }

}

Figure 5.15. C code for a vecsum function.

0x00000180 lw r3, r5, r9 → 0:add

 → 1:load

0x00000184 lw r4, r6, r9 → 2:add

 → 3:load

0x00000188 addik r10, r10, 1 → 4:add

0x0000018C addk r3, r3, r4 → 5:add

0x00000190 sw r3, r7, r9 → 6:add

 → 7:store

0x00000194 rsubk r18, r10, r8 → 8:rsub_carry

0x00000198 bneid r18, -24 → 9:equalZero

0x0000019C addik r9, r9, 4 → 10:add

Figure 5.16. Assembly instructions of the repeating pattern of a Megablock found in the trace of

vecsum running on a MicroBlaze processor, and their correspondent translation to operations to be

mapped to a CGRA.

The lw instructions with address 180 and 184 read values from the memory

addresses given by the sum of the content of register 9 and the content of register 5 and

6, respectively. The sw instruction with address 190 writes the content of register 3 to

the memory address given by the sum of the content of register 9 and the content of

register 7. Depending on the values of register 5, 6 and 7, these instructions can be

reading and writing to the same memory position in the same or in different iterations.

If a Megablock contains instructions which write to memory, there might be indirect

dependencies. Because registers can have any value, the dependency is not tied to the

registers we use, but on the addresses accessed. Memory instructions will be dependent

77

if at any point in the Megablock, a write operation has the same target address of a

previous or a subsequent read operation.

Figure 5.17. Graph representation of the repeating pattern of the Megablock found when executing

vecsum.

We focus on the pipelining of Megablocks with specific characteristics. We will

show later on (see Chapter 6, Section 6.4) that those characteristics/constraints will not

prevent us to pipeline most of the Megablocks extracted from the set of benchmarks

used in this work. Specifically, we consider Megablocks which an analysis can

determine to have no indirect inter-iteration dependencies. This information implies

memory disambiguation techniques, and can be provided either by a compiler, or

extracted from the Megablock.

A Megablock does not have indirect inter-iteration dependencies if we can guarantee

that: 1) store operations are executed according to their original order; 2) the contents of

the addresses accessed by load operations are not changed during the Megablock.

Guarantee 1) implies a mechanism for serializing the memory writes, and can be

enforced when mapping the operations to the hardware. This guarantee avoids output

dependencies between memory writes. Guarantee 2) is dependent on the program and

0:add

1:load

0:0

r5 (input)

0:0

r9 (input)

0:1

2:add

0:1

6:add

0:1

10:add

0:0

5:add

0:0

4

0:1

3:load

0:0

r6 (input)

0:0

0:1

4

0:1

7:store

0:1

0:0

r7 (input)

0:0

4

0:2

feedback (0)

4

0:1

4:add

r10 (input)

feedback (0)

8:rsub_carry

0:0 0:0

1

0:1

9:equalZero

0:0

r8 (input)

0:1

1

0:2

Exit:0

control

78

compiler options. If guarantee 2) holds, the values accessed by load operations are

immutable, avoiding true dependencies and anti-dependencies between memory

operations. This guarantee can be achieved when programs use separate memory

regions (e.g., occurring with non-overlapped arrays) for reading and writing values.

This information can be given to the compiler in C by using the restrict keyword of

the C99 standard when declaring pointers [116], or can be determined in some cases by

alias analysis techniques.

As guarantee 1) can be enforced by the mapping phase, we only have to ensure that

Megablocks respect guarantee 2). As an example, the source code in Figure 5.15, which

originated the assembly instructions of Figure 5.16 and the Megablock graph

representation of Figure 5.17, uses different arrays for reading and writing, thus

respecting guarantee 2). We assume that this information is given by the compiler as

additional information. It can also be discovered by analysis of the Megablock6.

5.6.2 Architecture for Pipelined Megablocks

Figure 5.18 shows two general RPU architectures for pipelining Megablocks. The

architecture in Figure 5.18b) is a specialization of the architecture in Figure 5.18a),

when considering Megablocks without memory accesses. Both architectures have an

Input Module (IM) and a Loop Module (LM). The architecture with support for

memory operations (see Figure 5.18b)) includes a Store Module (SM) and load units

inside the LM. Both architectures execute iterations atomically, i.e. iterations are either

fully executed or discarded. An iteration is discarded when it activates an exit point.

When an exit point is activated, the Megablock execution ends.

The LM is a pipelined dataflow implementation of the Megablock repeating pattern

(can be thought as the kernel), where the Megablock is split into several stages (see

Figure 5.19). Each stage executes a different iteration of the Megablock, and when the

LM advances a step (which can take from one to several clock cycles, depending on the

Megablock and its implementation), all stages execute simultaneously.

6 Note that this is not focused on this thesis. However, as an example: in this case, the value of

register 9, which is used by the three memory operations, does not change between the loads and the store
operations. If we know the values of r5, r6 and r7, we can calculate the minimum distance between the
load and the store operations. If the minimum distance is D, this means that we can overlap up to D
iterations, which will determine the maximum number of the pipeline stages we can have without
incurring in indirect dependencies.

79

a) RPU with memory operations b) RPU without memory operations

Figure 5.18. General blocks for Megablock pipelined execution.

Figure 5.19. Execution of an LM with three stages.

An iteration completes when it finishes execution in the last stage of the LM without

activating exit points. All exit points are delayed so that when they are checked, the

corresponding iteration is in the last stage. After filling the pipeline (step 3 in Figure

5.19), the LM completes an iteration per step. To advance a step, the LM needs the

values generated by the IM. The IM is responsible for generating the set of inputs for

each iteration, and only depends on the values generated in the previous step of the IM.

This approach includes a module for store operations (i.e., SM) to implement

guarantee 1) for indirect dependencies (i.e. store operations have to be executed by their

original order). Since the LM executes operations of different iterations simultaneously,

the store operations are moved outside the LM, i.e., to the SM. This way, all store

operations are delayed to just after the last stage. The SM only execute if no exits are

activated for that iteration, avoiding speculative writes to memory. The SM depends on

the results of the LM.

LM

IM

SM

Load

Load

LM

IM

Iteration 1Stage 1

-Stage 2

-Stage 3

Iteration 2

Iteration 1

-

Iteration 3

Iteration 2

Iteration 1

Step 1 Step 2 Step 3

IM IM IM

LM

80

According to guarantee 2) for indirect dependencies, load operations are done from

immutable locations. This means that load operations can be done in any order, and

remain inside the LM. However, in this case the step of the LM only finishes after all

load operations complete.

Table 5.3 summarizes the execution dependencies between the modules of the

pipelined RPU. Figure 5.20 shows two schedules for the execution of the pipelined RPU

with memory accesses. Figure 5.20 a) presents the steady state of the simplest execution

schedule for the modules, which is to execute the modules sequentially. However,

according to the dependencies, the IM only depends on its previous values, and as soon

as it finishes execution, it can start computing the values of the next iteration. If we

overlap the execution of the IM with the remaining modules, we obtain the schedule

presented in Figure 5.20b) to d).

Module Depends On Results From
IM (Input Module) IM of previous iteration
LM (Loop Module) IM of current iteration
SM (Store Module) LM of current iteration

Table 5.3. Dependencies between the modules of a pipelined RPU.

The IM execution is split in two parts executed concurrently, IM-A and IM-L. IM-A

refers to the execution of arithmetic and logic operations (e.g., addition, subtraction).

IM-L corresponds to the execution of load operations. In this model store operations are

not allowed in the IM. The IM is split in these two components as in real-life systems

the number of concurrent memory accesses is usually very limited, and when the IM

execution overlaps with the execution of the remaining modules, they will compete for

the same limited resources. We consider that the execution of the IM associated to the

load operations (IM-L) does not overlap with the remaining modules (LM and SM),

which can also have memory operations. The LM can have a similar decomposition,

LM-A and LM-L, where the arithmetic and logic components execute concurrently with

both the IM-A component and the memory related components, in a third overlapping

level. As the LM is pipelined, the arithmetic-logic part usually executes within one

clock cycle, and the load operations represent the longest execution part of the LM. For

simplicity’s sake, this decomposition was not considered.

81

a) Sequential – Steady State b) Overlapping - Prologue

c) Overlapping – Steady State d) Overlapping – Exit Iteration

Figure 5.20. Possible schedules for the modules of a pipelined RPU.

The sequential schedule also has a prologue stage and an exit iteration, identical to

the ones for the overlapping schedule, but without the overlapping of the arithmetic and

logic operations. The RPU without memory accesses uses similar schedules, which do

not include the SM.

Software pipelining algorithms usually consider a prologue, a steady state, and an

epilogue. The purpose of the epilogue is to orderly terminate the execution of iterations

which cannot execute in the steady state because there are no more new iterations to

feed the pipeline. Our approach does not have an epilogue. Since we commit iterations

atomically, we can simply ignore the iterations which have already started but have not

yet terminated by the time an exit is activated.

Figure 5.21 shows the execution of the RPU modules when using an overlapping

schedule, and considering that the LM has three stages and executes for two iterations.

In the first step, the IM is the only module executing. In the second step, the results

from the first step of the IM are ready and both the first step of the LM and the next step

of the IM can start concurrently. The SM does not execute yet because it uses data from

the last stage of the LM. At this point, the first iteration is in the first stage. As we are

considering an LM with 3 stages, there is no data available in the third stage yet. When

the first iteration executes in the last stage of the LM, the pipeline becomes full, and

after execution, the SM can perform the stores of the first iteration and complete it.

Each following step of the RPU completes an iteration. In the last step, the Megablock

exits. As the stores of that iteration are neither performed nor the inputs of the next

IM(step) LM(step) SM(step)

RPU Iteration
LM(stages-1)

RPU Iteration

IM-A(stages)IM-A(1)
...

IM-L(1) IM-L(stages)

LM(step+stages-1) SM(step)

RPU Iteration

IM-A(step+stages)

IM-L(step+stages) LM(stages+iterations)

RPU Iteration

82

iteration are needed, the execution stops after computing the results of the exit signals of

the LM.

Figure 5.21. Execution using an overlapping schedule with an LM with 3 stages.

Equations (5.5) to (5.9) define the term RPUCy of equation (5.2) for the sequential

and overlapping schedules, respectively, of the pipelined RPU with support for memory

accesses. The term LMStg represents the number of stages in the LM, while NIt

represents the number of completed iterations in the Megablock.

The sequential schedule equations (5.5) and (5.6) consider an RPU with and without

memory accesses, respectively. The terms IM-AvgCy, LM-AvgCy and SM-AvgCy

represent the average clock cycles needed to execute a single step of the IM, LM, and

SM, respectively. LM-LastCy represents the clock cycles needed to execute the last step

of the LM in the exit iteration.

In the overlapping schedule equations (from (5.7) to (5.9)), the terms IM-A(i)Cy, IM-

L(i)Cy , LM(i)Cy and SM(i)Cy. represent the clock cycles needed to complete the step i of

the corresponding module. Equations (5.8) and (5.9) consider that each module always

executes in a fixed number of clock cycles represented by the terms IM-ACy, IM-LCy,

LMCy and SMCy.

Usually, the latency of the LM is determined by the latency of the load operations.

As the LM is pipelined, an LM without load operations will have the shortest step

between all modules (usually one clock cycle). In this case, the IM latency becomes the

dominant term. Considering the overlapping schedule without memory accesses, this

means that the Max operation in equation (5.9) can be in most cases simplified to IMCy.

Equations (5.10) and (5.11) estimate the number of clock cycles needed by the RPU,

for sequential and overlapping schedules, when Megablocks have a large number of

iterations, well above the number of stages of the LM. These equations are useful for

comparing the performance of both schedules, and for calculating maximum theoretical

speedup limits when comparing with non-pipelined Megablock implementations.

LM(1)

IM-A(2)

LM(3-2-1) SM(1)

IM-A(4)

LM(4-3-2) SM(2)

IM-A(5)IM-A(1)

LM(2-1)

IM-A(3)

Prologue Steady State

LM Stages = 3
Iterations = 2

First Iteration Second Iteration

LM(5-4-3)

Exit Iteration

IM-L(1) IM-L(5)IM-L(4)IM-L(3)IM-L(2)

83

5.6.3 Megablock Pipelining Algorithm

Consider the Megablock graph representation in Figure 5.17. As referred before in

Chapter 4, Section 4.4, feedback connections in the graph representation can only point

to nodes of the type Livein, and indicate the value that the input will have in the next

iteration. They represent the inter-iteration direct dependencies.

Using the feedback connections we can extract the expressions which control the

value of the inputs in the subsequent iterations. Starting at a Livein node with a

feedback connection, traversing the graph in the opposite direction of the connection

will reach the node that generates the input value for the next iteration. The algorithm

buildExpressionGraph in Figure 5.22b) creates, given a node, a directed graph which

represents the expression that calculates the values of that node. For instance, following

the feedback connection in node r9 (input), the values of the Livein are given by the

output of the node 10:add. Applying the algorithm buildExpressionGraph to this node

will initially build a new graph. As it is the first time the algorithm sees the node

10:add, this node is added to the graph. This node is an operation, so the algorithm is

called recursively over each of the parent nodes of the node 10:add. All the inputs of

this node are either of type Livein or Constant, so after they are added to the graph, the

algorithm stops. The algorithm returns a graph which represents the update expression

for r10 (input), which in this case is r9 = r9 + 4. The algorithm process to the next

Livein node with a feedback connection (i.e., r10) and repeats the process. As this is the

last Livein node with a feedback connection, there are no more expressions to extract.

In our pipelining technique, the algorithm buildInputModuleGraph (see Figure

5.22a)) is applied over the original Megablock graph to extract the inputModuleGraph,

which represents the IM (see Figure 5.23). This graph is built by generating a graph for

each input node which has a feedback connection, and merging the resulting graphs in a

single graph. This graph represents the hardware structure responsible for generating the

inputs for each Megablock iteration.

As the feedback connections from the original Megablock graph (see Figure 5.17)

are being handled by the IM, when implementing the LM those connections can be

ignored. Additionally, as our technique moves the store operations to outside of the LM,

those operations are also removed from the graph. The scheduling of the resulting graph

represents the LM. In Figure 5.24 we present a schedule of an LM graph using an “As-

84

Soon-As-Possible” (ASAP) based scheduler [117]. It results in a 3-stage pipeline. The

SM is composed by the single store operation of the Megablock.

When implementing the pipelined Megablock, the outputs of the IM are connected

to the inputs of the LM, and the values needed by the store operations are passed from

the LM to the SM. Input nodes which do not have an incoming feedback connection do

not change their value during loop execution and do not need to be updated.

RpuMemCy = �IM-AvgCy + LM-AvgCy�× �LM��� + N�� − 1�+ SM-AvgCy

× NIt + LM-LastCy
(5.5)

RpuNoMemCy = �IM-AvgCy + LM-Avg��� × �LM��� + N�� − 1�
+ LM-LastCy

(5.6)

RpuMemVarCy = ����IM-A�i���, IM-L�i����

+ � ����IM-A�i���, IM-L�i��� + LM�i − 1����
�����

	
�

+���� 	IM-A�i + LM������, IM-L�i + LM������
���

	

+ LM�i + LM��� − 1�
��

+ SM�i���
+ LM�N�� + LM������

(5.7)

RpuMemFixedCy

= ����IM-A��, IM-L���+����IM-A��, IM-L�� + LM���
× �LM��� − 1�+����IM-A��, IM-L�� + LM�� + SM���
× N�� + LM��

(5.8)

RpuNoMem-FixedCy

= IM-ACy +����IM-A��, LM���× �LM��� + N�� − 1�
+ LM��

(5.9)

RpuSequentialCy = �IM-AvgCy + LM-AvgCy + SM-AvgCy� × N�� (5.10)

RpuOverlappingCy = ����IM-A��, IM-L�� + LM�� + SM���× N�� (5.11)

Let us consider the IM in Figure 5.23. In this case we have an IM without loads (IM-

LCy is 0) which can be executed in one clock cycle (IM-ACy is 1). The LM (see Figure

5.24) has three stages (LMStg is 3), and if we only consider the arithmetic and logic

85

operations, the maximum number of clock cycles a stage needs is one. If we admit two

simultaneous loads per clock cycle, and with loads with one clock cycle latency, the

maximum number of clock cycles a stage needs, taking into account memory accesses,

is one (LMCy is one). If we admit one clock cycle for the store latency, the store module

needs one cycle per step (SMCy is one).

buildInputModuleGraph(megablock)

 megablockDfg = createDfg(megablock)

 for each input of megablockDfg

 if input has feedback connection

 sourceNode = feedback parent

 inputDfg = buildExpressionGraph(sourceNode)

 add inputDfg to inputDfgList

 end for

 inputModuleGraph = mergeDfgs(inputDfgList)

a) Algorithm buildInputModuleGraph

buildExpressionGraph(sourceNode)

 if(sourceNode already added)

 return

 else

 add sourceNode

 if(sourceNode type is constant)

 return

 if(sourceNode type is livein)

 return

 for each parent of sourceNode

 buildExpressionGraph(parent)

 end for
b) Algorithm buildExpressionGraph

Figure 5.22. Algorithms for IM graph creation.

Let us consider a sequential scheduling. As we have memory accesses, equation

(5.5) is used. In this case, the step in all modules has a fixed number of clock cycles, so

the average number of clock cycles is the same as the number of clock cycles to execute

a module. If the loop executes for 100 iterations, the number of clock cycles of the RPU

execution is (1 + 1) × (3 + 100 - 1) + 1 × 100 + 1 = 305 clock cycles.

86

If we use an overlapping scheduling instead, and as the modules have a fixed

number of clock cycles, equation (5.8) is used. If the loop executes for 100 iterations,

the number of clock cycles of the RPU execution is max(1, 0) + max(1, 0 + 1) × (3 - 1)

+ max(1, 0 + 1 + 1) × 100 + 1 = 204 clock cycles. This results in a speedup of 1.49×

when comparing the latency of the overlapped schedule over the sequential schedule, in

this case.

Figure 5.23. Input Module (IM) graph for a Megablock found in vecsum.

Figure 5.24. Loop Module (LM) schedule for a Megablock found in vecsum.

5.6.4 Hardware Support for Megablock Pipelining

Consider the general architecture, for a 2D CGRA with Megablock support,

depicted in Figure 5.11. To enable our Megablock pipelining approach in such CGRAs,

we propose three hardware extensions presented in Figure 5.25: (a) feedback lines to the

top row, for the IM; (b) clock-enable control signals for each module; and (c) delays for

the exit signals. The extensions enable the implementation of the IM, the LM, and the

SM at the hardware level. The same extensions can be applied to specialized

S
ta

g
e

 110:add

r9 (next)

r9 (input)

0:0

4

0:1

4:add

r10 (next)

r10 (input)

0:0

1

0:1

S
ta

g
e

 1

0:add 2:add 4:add 6:add

1:load 3:load 8:rsub

S
ta

g
e

 2

5:add

S
ta

g
e

 3

9:equal
Zero

10:add

87

architectures, such as the SAr (see Section 5.5.2) and the SRA (see Section 5.5.3). For

simplicity, the CGRA in Figure 5.25 only has three rows.

Figure 5.25. General architecture for a 2D CGRA-based RPU which supports Megablocks and

Megablock pipelining.

The feedback lines (a) are needed for the IM re-alimentation. This kind of

interconnection can be expensive, but as only Input Modules with a low number of

stages are attractive for implementation, these lines can be present in only a restricted

number of top rows. As the modules have producer-consumer relationships between

them, we use a Step Controller (b) to indicate when there are values available for each

module, and when they can execute. The exit delays (c) synchronize the exit signals so

that when they activate, they always correspond to the iteration in the last stage. They

can be implemented with simple 1-bit FIFOs.

LD/ST
1

LD/ST
M

FU 1 FU 2

Interconnect

FU N

Iteration C
ontrol

Exit Condition

LD/ST
1

LD/ST
M

FU 1 FU 2 FU N

Interconnect

Exit Condition

F
ee

db
ac

k

Step
Controller

IM
 S

te
p

Input M
odule

Loop M
odule

a)

b)

c)

Interconnect

LD/ST
1

LD/ST
M

FU 1 FU 2 FU N

Exit Condition

Interconnect

S
tore M

odule

LM
 S

te
p

S
M

 S
te

p

88

5.7 Summary

This chapter focused on the practical aspects of using Megablocks. We explained

how to transform assembly instructions into the Megablock graph representation. We

proposed and compared two techniques for identifying previously detected Megablocks

in a trace: Single Address Identification (SAI) and Megablock Signature Identification

(MSI). We described RPU architectures able to implement Megablocks

Finally, we explored the possibility of pipelining Megablocks in hardware, by

suggesting techniques to handle the inter-iteration dependencies, as well as architecture

augmentations to support Megablock pipelining. This technique is appropriate for loops

where the operations related to the update of values used across iterations represent a

small part of the loop and can be executed with lower latency than the complete loop.

89

6 Experimental Results

This chapter presents extensive results about the techniques introduced in the previous

chapters, such as characterization of Megablock coverage, and experiments considering

several scenarios regarding Megablock mapping (i.e., baseline results, if-conversion, graph

transformations) and pipelining of Megablocks.

6.1 Experimental Setup

We consider the general architecture described in Section 5.5, with an Reconfigurable

Processing Unit (RPU) coupled to the General Purpose Processor (GPP) as depicted in Figure

5.10b). We use a MicroBlaze soft-core [90] as the target GPP, optimized for speed. The GPP

communicates directly with the RPU through FSL connections [118]. We use a Xilinx

Spartan-6 LX45 FPGA as the target FPGA platform for the implementation of hardware

designs.

To evaluate our approach, we use a set of 66 benchmarks using integer data types from

embedded computing (the benchmarks are available online [119]). We use mb-gcc 4.1.2

[120], the GCC compiler targeting MicroBlaze. By default, the optimization level flag is set

to –O27. The 66 benchmarks were separated in two sets, named ifs and no-ifs, according to the

existence or non-existence of control-flow related constructions (e.g., if statements in C code)

in the kernels, respectively. The ifs set contains 29 benchmarks and the no-ifs set contains 37

benchmarks. Table 6.1 and Table 6.2 present a characterization of the benchmarks that form

the no-ifs and ifs sets, respectively. Column “Kernel LOC” indicates the number of lines of

code that compromise the benchmark kernel, excluding comment and empty lines. The

kernels contain a wide range of code sizes, from simple to complex examples. The lines of

code vary between 6 and 241 in the no-ifs set, and from 9 to 226 in the ifs set.

7 It has been observed that unoptimized code is much easier to schedule than optimized code [15]. Although

it is not guaranteed that all the binaries running on the system have been compiled with optimizations, we opted
to use compiler-optimized programs when evaluating scheduling algorithms by default.

90

Benchmark Kernel LOC #loops
Max. Loop

nesting level

#Input/output

arrays
Autcor 15 2 1 1/1

Bilinear 190 1 0 2/1

bob_hash 16 1 0 1/0

Checkbits 31 1 0 1/1

Checksum 103 1 0 1/1

compress1 15 1 0 0/0

compress2 20 1 0 0/0

corr_gen 17 2 1 2/1

Count 8 1 0 0/0

Dotprod 6 1 0 2/1

even_ones 9 1 0 0/0

Expand 14 1 0 0/0

fdct_8x8 241 4 2 1/1

fft 39 3 2 2/1

fibonacci 26 1 0 0/0

fir 16 2 1 2/1

gcd2 16 1 0 0/0

gouraud 12 1 0 0/1

hamming_dist 11 1 0 0/0

lookup2 55 1 0 1/0

maxstr1 6 1 0 0/0

maxstr2 25 1 0 0/0

md5 173 1 0 1/1

mulinv 18 1 0 0/0

perlins 96 1 0 1/1

pix_expand 12 1 0 1/1

popcmpr 20 1 0 0/0

popcnt 12 2 1 1/1

quantize 42 2 1 2/1

reverse 10 1 0 0/0

smooth 23 4 3 1/1

vecsum 10 1 0 2/1

wave_horz 31 4 2 3/1

wave_vert 40 4 2 3/2

ycbcr422p_rgb 148 1 0 3/1

yc_demux_be16 22 1 0 1/3

yc_demux_le16 22 1 0 1/3

Table 6.1. Characteristics of the benchmarks which form the set no-ifs.

91

Benchmark
Kernel
LOC

#Ifs
inside
loop

Ifs Max
Nesting

#Invoked
Functions #loops

Max. Loop
nesting level

#Input/output
arrays

adpcm_coder 67 9 1 0 1 0 1/1

adpcm_decoder 52 6 2 0 1 0 1/1

boundary 18 1 0 0 2 1 1/2

bubble_sort 14 1 0 0 2 1 1/0

change_brightness 24 1 1 0 1 0 1/1

compositing 12 2 0 0 1 0 2/1

conv_3x3 81 2 0 0 2 1 2/1

crc32 15 1 1 0 1 0 0/0

divlu 16 1 0 0 1 0 0/0

gcd1 15 1 1 0 1 0 0/0

idct_8x8_12q4 226 16 1 0 4 1 1/1

isqrt1 21 4 0 0 1 0 0/0

isqrt2 16 1 0 0 1 0 0/0

isqrt3 17 1 0 0 1 0 0/0

isqrt4 18 1 1 0 1 0 0/0

mad_16x16 36 1 0 1 4 3 2/1

mad_8x8 35 1 0 1 4 3 2/1

max 9 1 0 0 1 0 1/0

median_3x3 82 13 0 0 1 0 1/1

modexp 11 1 0 0 1 0 0/0

motion_estimation 22 0 0 1 4 3 2/1

perimeter 35 1 1 0 1 0 1/1

pix_sat 24 1 2 0 1 0 1/0

rgb_to_hsv_int 57 9 2 0 1 0 3/1

rng 177 7 1 0 1 0 1/1

sad_16x16 17 0 0 1 2 1 1/1

sad_8x8 17 0 0 1 2 1 1/1

sobel 51 1 0 2 1 0 1/1

viterbi_gsm 37 1 1 0 4 2 3/2

Table 6.2. Characteristics of the benchmarks which form the set ifs.

Columns #loops and Max. loop nesting level indicate the number of loop constructions in

the code (e.g., for and while statements), and the maximum nesting level of the loops. All

examples contain at least one loop construct, and most benchmarks do not have nested loops

(27% and 34% of the benchmarks in the no-ifs and ifs sets have nested loops, respectively).

Column #Input/output arrays indicate the number of arrays which are used as input/ output of

the kernel. In most cases, the benchmarks either use one array for input values and another for

output values, or do not use arrays at all.

92

Table 6.2 includes three additional columns. The column #Ifs inside loop indicates the

number of control-flow constructions (e.g., if statements) found in the source code (only ifs

inside loops are accounted for), while the column Ifs max nesting indicates the maximum size

of an if statement chain. The column Invoked Functions indicates the number of times the

benchmarks call an external function. This behavior was found only in a reduced number of

benchmarks of the ifs set, being abs the only function called in those benchmarks.

All benchmarks use initialized input data. The input arrays are declared as global variables

with static initializers to minimize the impact of the initialization when running the

benchmark. The arrays are initialized with random values, with well-defined seeds to ensure

the repeatability of the experiments. The total execution clock cycles of the benchmarks,

when executing in the MicroBlaze considered for experiments, vary between 10,000 and

1,000,000 clock cycles.

For the speedup estimations concerning the Megablocks, we used the instruction latencies

of a MicroBlaze processor optimized for speed (as defined in the MicroBlaze Reference

manual [90]), for the equivalent operations of the intermediate representation. We consider

that the program data fits in the FPGA Block RAMs (BRAMs), thus enabling loads and stores

to memory to be done in one clock cycle [121], and we consider, as default, that up to 2

simultaneous memory accesses can be done in one clock cycle (this setup fits well with

embedded devices, e.g., the dual-port BRAMs found in FPGAs [122], and memory

architectures of DSPs [123]).

We used the tool Megablock Extractor (see Figure C.1a) and Figure C.1b) in Appendix C)

to extract the Megablocks from the executable binaries, and the tool Megablock Estimation

(see Figure C.2a) and Figure C.2b) in Appendix C) to simulate an architecture which supports

the extracted Megablocks.

For the hardware implementations of the Megablocks, we used the tool VHDL for

Megablocks (see Figure C.3 in Appendix C) to generate the hardware modules, and Xilinx

ISE 12.2 to obtain synthesis and placement and routing results.

6.2 Megablock Coverage

The coverage of a detection method over the execution of a program is an important

measure, as it indicates an upper bound of the impact an RPU can have (Section 4.1). To

measure the coverage of the Megablock, we considered three adjustable parameters of

93

Megablock detection: maximum pattern size, type of pattern unit (the considered units are

instruction, basic block and fragment) and unrolling of inner loops. To maximize the number

of detected Megablocks, the parameter executed instructions threshold is set to 1 (see Section

4.3). The proposed identification methods (see Section 5.4), Single Address Identification

(SAI) and Megablock Signature Identification (MSI) , can have an impact in the coverage

and we also take it into consideration. We also indicate the detection ratio, i.e., in how many

benchmarks we can detect at least one Megablock (coverage greater than 0%).

Figure 6.1 shows the average coverage obtained when using the Megablock detection

considering several values for the parameters described above. The coverage results represent

an average over the coverage of all benchmarks, including benchmarks without detected

Megablocks (coverage equal to 0%). For instance, when using the SAI method and no

unrolling of innermost loops, basic block as the detection unit, and 8 as the maximum pattern

size, the average coverage achieved by the Megablock detection in the complete set of 66

benchmarks is 70%.

a) b)

c) d)

Figure 6.1. Average coverage of the complete set of benchmarks when applying Megablock detection and

varying several parameters.

Figure 6.2 shows the ratio of benchmarks where Megablocks were detected (coverage

greater than 0%). In this set of benchmarks, unrolling increases the ratio of benchmarks with

0%

20%

40%

60%

80%

100%

1 2 4 8 12 16 24 32 48 64

SAI/Unrolling Disabled

0%

20%

40%

60%

80%

100%

1 2 4 8 12 16 24 32 48 64

SAI/Unrolling Enabled

0%

20%

40%

60%

80%

100%

1 2 4 8 12 16 24 32 48 64

MSI/Unrolling Disabled

0%

20%

40%

60%

80%

100%

1 2 4 8 12 16 24 32 48 64

Maximum Units per Megablock

MSI/Unrolling Enabled

instruction basic block fragment

94

detected Megablocks to close to 100% (see Figure 6.2), and diminishes the differences when

using basic blocks and superblocks as units when maximum pattern size is 24 or greater.

However, unrolling has a modest impact in the average coverage (see Figure 6.1). The ratio of

benchmarks with detected Megablocks was already high before unrolling (around 90%), and

the coverage values of the new benchmarks are close to the average. Unrolling increases the

average coverage by 3% in the best case.

a) b)

c) d)

Figure 6.2. Megablock detection ratio in the complete set of benchmarks. Indicates the ratio of

benchmarks were valid Megablocks could be detected.

When compared with the SAI method, the MSI method lowered the coverage in all cases.

The main reason comes from the additional overhead in the MSI method when compared with

the SAI method (it has at least an overhead of two iterations per call, which are needed to

detect the Megablock).

In the other hand, in cases where there are many conflicts due to Megablocks having the

same start address, MSI can execute both, potentially increasing the coverage. However, for

the tested benchmarks, on average the additional overhead outweighed this benefit.

With the SAI method, the average coverage when using basic block and fragment units

converged rapidly, at a value of maximum pattern size of 4. However, to obtain Megablock

0%

20%

40%

60%

80%

100%

1 2 4 8 12 16 24 32 48 64

SAI/Unrolling Disabled

0%

20%

40%

60%

80%

100%

1 2 4 8 12 16 24 32 48 64

SAI/Unrolling Enabled

0%

20%

40%

60%

80%

100%

1 2 4 8 12 16 24 32 48 64

MSI/Unrolling Disabled

0%

20%

40%

60%

80%

100%

1 2 4 8 12 16 24 32 48 64

Maximum Units per Megablock

MSI/Unrolling Enabled

instruction basic block fragment

95

detection rates close to 100% with basic block units, the maximum pattern size needs to be

increased to 24 and unrolling must be enabled.

When using unrolling, in some cases the average coverage lowers with an increase in the

maximum pattern size. This happens because when using unrolling, outer loops with unrolled

inner loops are given a higher priority than isolated inner loops. If the path of the outer loop is

not regular, the Megablock terminates sooner and completes a lower number of total inner

loop iterations than if the inner loop had been implemented instead of the outer loop.

Summarizing, unrolling can be counterproductive in benchmarks which do not form regular

execution patterns, and aggravates when the number of iterations of the outer loop is low

(e.g., less than 10).

According to the obtained values, we decided to use a default setup for Megablock

detection, with a maximum pattern size of 248, and basic block as detection unit. Unrolling of

inner loops is considered as an optional parameter.

We have chosen the basic block as the default detection unit as it is simpler to implement

than fragments, and a maximum pattern of size of 24 provides similar Megablock detection

coverage when using units either based on basic blocks or fragments.

Figure 6.3 shows individual coverage values for each benchmark, when considering the

default Megablock detection setup and an implementation of the Backward Branch Loop

Detection (BBLD) used in the Warp Processor [124, 125]. For the Megablock detection we

disabled unrolling of inner loops to provide a fair comparison, as BBLD only supports inner

loop detection. The results in Figure 6.3 show, on average, higher coverage when using the

BBLD. This was expected, as the current Megablock detection trades-off the coverage

obtained when statically considering all paths of a loop, with having a loop which represents

an execution path. The advantage of having an execution path loop is that it forms a dataflow

representation suited for non-sequential computation models. Furthermore, we can apply

transformations which cannot be used, or that are more complex, when considering loops with

branching code.

With respect to coverage, the results are highly dependent on the benchmark. In some

examples the difference between coverage values is high (e.g., for isqrt, maxstr, pix_sat,

viterbi_gsm), and in some cases Megablocks are not identified (e.g., adpcm_coder,

8 A runtime adaptation of the maximum patter size according to the characteristics of the application running

on the system is not considered in this work.

96

adpcm_decoder, conv_3x3, smooth). This happens with kernels of the benchmarks containing

branches, and not forming repeating patterns during execution.

Figure 6.3. Individual coverage values in the main set of benchmarks, for Megablock detection using the

default setup and Backward Branch Loop Detection.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Megablock Default Setup Backward Branch

97

Other examples allow high Megablock coverage values, above 80%, even when the

kernels have branches (e.g., change_brightness, gcd2, max, lookup2). In these cases, there

were one or more frequent paths representing most of the execution of the kernel. Megablock

coverage close to 100% usually represents benchmarks which do not have branches inside the

kernel (e.g., autcor, bob_hash, compositing, dotprod, gouraud, vecsum). There are also

examples where the Megablock detection has high coverage values, but the BBLD has very

low or 0% coverage (e.g., bilinear, checkbits, checksum, md5, perlins). This corresponds to

kernels with loops above a certain size (i.e., several hundreds of instructions).

The objective of using Megablocks is to have a runtime structure better suited for

implementation in an RPU than the static representation of the loop. However, the Megablock

is only useful if a substantial portion of the program execution is spent inside Megablocks. In

this section we explored the Megablock coverage over a number of detection configurations

and arrived at a default setup. The average coverage achieved by Megablock detection in the

main set of benchmarks when using the default setup is 70%, while about half of the

benchmarks achieved coverage over 90%, which corresponds to an average overall speedup

upper bound of 3.3× and 10× respectively. We consider that these results justify the use of

Megablocks in a dynamic partitioning approach.

6.3 Megablock Mapping

We have developed tools which enabled us to study the impact of using Megablocks in a

dynamic partitioning system. This section presents extensive estimation results over several

configurations. We also have tested this approach by implementing a proof-of-concept system

[126], whose presentation and results are available in Appendix A.

We considered the default Megablock detection setup (basic block as the type of pattern

unit, maximum pattern size of 24), using the SAI method. When using SAI, there can be

conflicts if two Megablocks share the same start address. If there are address conflicts

between two or more Megablocks, the Megablock with higher coverage is chosen, according

to an approximate coverage estimation performed during the detection phase. The mapping of

memory operations respects the original order of the operations.

As target architecture we use the SAr architecture considering FUs with registered outputs

(see Section 5.5.2). The reason for choosing this architecture is twofold. On a practical point

of view, among the presented architectures, this was the easiest to test and implement. On the

98

other hand, it is still possible to obtain results meaningful for the other architectures. When

the results of each FU are stored in registers in the SAr architecture, the latency of Megablock

execution (i.e., clock cycles) is equivalent to the latency of the other architectures presented in

Section 5.5, including the General 2D CGRA (see Section 5.5.1), the SRA (see Section 5.5.3)

and the Folded CGRA (see Section 5.5.4).

We considered three parameters which define the target SAr architecture: maximum

number of concurrent memory operations, maximum number of concurrent arithmetic-logic

operations, and the ratio between the clock frequency of the RPU and the processor.

For each set of benchmarks, we considered the cases were unrolling of inner loops is

disabled (innerloops) or enabled (unrolled). We consider innerloops as the default parameter,

and present results with unrolling enabled for the cases where there is any change. The values

are obtained with the tool Megablock Estimation (see Figure C.2a) and Figure C.2b) in

Appendix C), which has support for an estimator based on a SAr architecture (see Section

5.5.2) with registered results. In the speedup calculations we consider all communication

overheads.

6.3.1 Baseline Results

Table 6.3 and Table 6.4 present the characteristics of the detected Megablocks with

innerloops, for the no-ifs and ifs sets, respectively. Table 6.5 and Table 6.6 present the same

characteristics found in the unrolled case. For the baseline results, all graph transformations

proposed in Section 5.1 are disabled.

The Critical Path Length (CPL) and Instruction Level Parallelism (ILP) results were

calculated assuming there are no restrictions in the target architecture (e.g., unlimited

arithmetic, logic and memory operations per clock cycle) and that memory operations are

independent. These results indicate an upper bound of the values that can be obtained when

implementing the Megablocks in practical architectures. We used a weighted average which

has into account the number of times each Megablock was executed.

99

Benchmark
Megablocks
Det./Exec.

Avg. It. per
call

Avg. Op.
per It.

 Avg. ILP
(Min/Max)

 Avg. CPL
(Min/Max)

autcor 1/1 159.0 13.0 2.6 5.0

bilinear 1/1 99.0 161.0 7.0 23.0

bob_hash 1/1 3999.0 11.0 1.4 8.0

checkbits 1/1 166.0 69.0 4.3 16.0

checksum 2/2 65.5 81.5 2.5 (2.0/3.0) 27.5 (3/52)

compress1 1/1 29.0 8.0 2.0 4.0

compress2 1/1 4.0 24.0 1.7 14.0

corr_gen 1/1 7.0 14.0 2.3 6.0

count 1/1 31.0 6.0 2.0 3.0

dotprod 1/1 2047.0 9.0 2.3 4.0

even_ones 1/1 31.0 6.0 2.0 3.0

expand 1/1 29.0 8.0 2.0 4.0

fdct_8x8 2/2 7.0 117.5 7.6 (7.4/7.8) 15.5 (15/16)

fft 3/2 11.0 34.3 4.9 (4.9/5.4) 7.0 (7/10)

fibonacci 1/1 2378.0 6.0 2.0 3.0

fir 1/1 3.0 11.0 2.2 5.0

gcd2 1/1 65.6 8.0 1.3 6.0

gouraud 1/1 1999.0 15.0 2.5 6.0

hamming_dist 1/1 31.0 6.0 2.0 3.0

lookup2 1/1 499.0 49.0 2.2 22.0

maxstr1 2/2 1.9 7.3 1.9 (1.3/4.8) 3.3 (3/5)

maxstr2 7/2 2.5 5.5 1.3 (1.3/6.0) 4.1 (4/11)

md5 1/1 99.0 837.0 1.9 451.0

mulinv 1/1 17.1 12.0 0.3 36.0

perlins 1/1 1023.0 124.0 4.3 29.0

pix_expand 1/1 4999.0 8.0 2.7 3.0

popcmpr 1/1 8.4 6.0 1.5 4.0

popcnt 1/1 31.0 8.0 2.7 3.0

quantize 1/1 199.0 13.0 1.9 7.0

reverse 1/1 31.0 7.0 2.3 3.0

smooth 0/0 N.A. N.A. N/A N/A

vecsum 1/1 2047.0 11.0 2.8 4.0

wave_horz 2/2 7.0 16.5 0.4 40.5 (40/41)

wave_vert 2/2 7.0 12.5 2.5 (2.4/2.6) 5.0

ycbcr422p_rgb 3/1 9.8 90.0 6.4 14.0

yc_demux_be16 1/1 999.0 22.0 7.3 3.0

yc_demux_le16 1/1 999.0 22.0 7.3 3.0

Table 6.3. Megablock characteristics for the no-ifs set, only inner loops.

100

Benchmark
Megablocks
Det./Exec.

Avg. It.
per call

Avg. Op.
per It.

 Avg. ILP
(Min/Max)

 Avg. CPL
(Min/Max)

adpcm_coder 0/0 N.A. N.A. N/A N/A

adpcm_decoder 0/0 N.A. N.A. N/A N/A

boundary 1/1 73.6 12.0 5.0 3.0

bubble_sort 2/1 6.8 9.0 2.5 4.0

change_brightness 3/2 10.2 11.0 2.6 (1.7/2.6) 5.1 (5/7)

compositing 1/1 199.0 18.0 2.0 11.0

conv_3x3 0/0 N.A. N.A. N/A N/A

crc32 0/0 N.A. N.A. N/A N/A

divlu 2/1 2.9 13.0 2.6 5.0

gcd1 2/2 16.4 5.0 2.2 (1.7/2.5) 2.4 (2/3)

idct_8x8_12q4 1/1 7.0 111.0 7.5 15.0

isqrt1 3/1 1.1 39.0 0.8 77.0

isqrt2 2/1 1.8 10.0 3.3 3.0

isqrt3 2/1 1.9 13.0 2.6 5.0

isqrt4 2/1 1.8 21.0 3.8 6.0

mad_16x16 1/1 15.0 13.0 1.8 8.0

mad_8x8 1/1 7.0 13.0 1.8 8.0

max 1/1 185.2 8.0 1.6 5.0

median_3x3 0/0 N.A. N.A. N/A N/A

modexp 1/1 2.0 12.0 0.2 70.0

motion_estimation 1/1 15.0 13.0 2.0 8.0

perimeter 1/1 78.7 19.0 5.3 4.0

pix_sat 2/2 2.0 12.0 1.9 7.0

rgb_to_hsv_int 5/1 1.2 57.0 1.7 38.0

rng 18/3 1.1 53.3 4.9 (4.8/4.9) 13.0

sad_16x16 1/1 15.0 14.0 1.8 8.0

sad_8x8 1/1 7.0 14.0 1.8 8.0

sobel 2/1 3.7 44.0 3.8 13.0

viterbi_gsm 1/1 1.6 49.0 8.1 7.0

Table 6.4. Megablock characteristics for the ifs set, only inner loops.

101

Benchmark
Megablocks
Det./Exec.

Avg. It.
per call

Avg. Op.
per It.

 Avg. ILP
(Min/Max)

 Avg. CPL
(Min/Max)

compress2 2/1 999.0 141.0 2.1 66.0

corr_gen 2/1 141.0 121.0 5.8 21.0

fdct_8x8 4/2 49.0 946.0 40.3 (39.6/41.0) 23.5 (23/24)

fft 6/2 11.0 34.3 4.9 (4.9/5.4) 7.0 (7/10)

fir 2/1 252.0 55.0 5.0 11.0

gcd2 2/2 46.6 10.1 1.3 (1.3/1.7) 7.2 (6/103)

maxstr1 9/2 1.6 22.3 2.8 (1.3/3.6) 6.9 (3/9)

maxstr2 27/2 2.5 6.3 1.3 (1.3/5.1) 4.2 (4/14)

mulinv 10/2 2.2 77.8 0.3 (0.3/0.4) 211.1 (36/632)

popcmpr 9/2 1.5 41.2 2.5 (1.5/3.5) 13.1 (4/22)

smooth 2/1 29.0 155.0 7.4 21.0

wave_horz 4/2 49.0 142.5 2.8 50.5 (50/51)

wave_vert 4/2 39.0 110.5 6.9 (6.6/7.2) 16.0

ycbcr422p_rgb 4/1 9.7 90.0 6.4 14.0

Table 6.5. Megablock characteristics for the no-ifs set when applying unrolling.

Benchmark
Megablocks
Det./Exec.

Avg. It.
per call

Avg. Op.
per It.

 Avg. ILP
(Min/Max)

 Avg. CPL
(Min/Max)

adpcm_coder 4/1 1.0 80.0 6.4 16.0

adpcm_decoder 9/1 1.2 64.0 6.7 12.0

conv_3x3 4/2 2.0 88.1 8.8 (7.0/19.8) 13.1 (13/14)

crc32 6/2 1.6 6.1 2.0 (2.0/4.3) 3.0 (3/14)

idct_8x8_12q4 2/1 49.0 868.0 36.5 25.0

isqrt1 9/2 1.3 22.9 0.3 (0.2/0.5) 82.2 (37/148)

isqrt3 8/1 1.9 15.0 3.0 5.0

isqrt4 4/2 1.6 22.9 3.9 (3.8/5.0) 7.1 (6/30)

mad_16x16 2/1 15.0 163.0 9.6 24.0

mad_8x8 2/1 7.0 83.0 7.4 16.0

modexp 7/3 2.0 12.7 0.2 (0.2/0.3) 70.5 (70/105)

motion_estimation 2/1 15.0 165.0 11.0 24.0

pix_sat 8/2 2.0 12.0 1.9 7.0

rgb_to_hsv_int 11/3 1.2 60.9 1.8 (1.6/3.2) 38.3 (38/41)

rng 15/3 1.1 53.3 4.9 (4.8/4.9) 13.0

sad_16x16 2/1 15.0 178.0 9.5 24.0

sad_8x8 2/1 7.0 90.0 7.3 16.0

sobel 8/1 3.7 44.0 3.8 13.0

viterbi_gsm 7/3 4.8 33.4 6.6 (4.3/14.3) 4.7 (3/8)

Table 6.6. Megablock characteristics for the ifs set when applying unrolling.

The column Megablocks Det./Exec. shows how many Megablocks were found in the

benchmarks, and how many of them could be used after identification. When considering the

102

no-ifs set, in most cases only one Megablock is detected. Unrolling increases the number of

detected Megablocks in the affected benchmarks as besides the previously detected loops, it

will also detect outer loops with the inner loops unrolled. Unrolling can detect loops in cases

where no loops are found when looking for only inner loops (e.g., as in smooth). However,

this strategy is less effective when the number of iterations of inner loops is variable.

Columns Avg. It. per call and Avg. Op. per It. represent the average number of iterations

per Megablock call, and the average number of executed operations per Megablock iteration,

respectively. The higher the number of iterations and the number of operations per iteration,

the longer the Megablock executes uninterruptedly in the RPU, diminishing the impact of

communication overhead.

Columns Avg. ILP and Avg. CPL are a weighted average of the ILP and CPL of the

executed Megablocks, respectively. If the minimum and/or the maximum value are different

from the average, they are presented between parentheses.

Considering the innerloops case, the ILP of the Megablocks ranges between 0.3 and 7.8

(average of 2.9) for the no-ifs set and between 0.2 and 8.1 (average of 3.0) for the ifs set. For

the same sets, the CPL ranges between 3 and 451 (average of 22.2) and between 2 and 77

(average of 13.9). After unrolling, the average ILP increases to 4.3 and 5.7 and the average

CPL increases to 30 and 16.3, for the no-ifs and ifs set, respectively. Unrolling inner loops

creates larger Megablocks with larger CPL, which can translate to Megablocks which execute

uninterruptedly on the RPU for longer periods. The larger ILP increases the parallelism

potential.

Some benchmarks have ILP below 1 (e.g., mulinv, wave_horz, isqrt1, modexp). All cases

correspond to Megablocks which have high-latency instructions, such as integer division,

which take several cycles to finish execution (e.g., an integer division operation has a latency

of 32 clock cycles in the considered architecture).

Figure 6.4 presents upper bound speedups considering three scenarios: in the Megablock

(CPL based) scenario, the speedup is estimated considering the CPL of the baseline graph of

the Megablock. This is equivalent to perform mapping with as many resources as needed. In

the Megablock (Zero Cycles) scenario, the execution time of the RPU is considered to be

zero, but considering communication overhead. This represents the maximum theoretical

speedup possible with detected Megablocks. The final scenario considers that both the RPU

execution time and communication time are zero.

103

Figure 6.4. Upper-bound speedups in the baseline case for three scenarios: execution time of the RPU

is equal to Megablock CPL, execution time of the RPU is zero and execution time of the RPU and

communication delays are zero.

Generally, benchmarks without branches in the loop show a much higher potential for

speedup. The average for the no-ifs set is one order of magnitude above the average for the ifs

set. Unrolling can have a positive effect in some of the affected benchmarks. There is a big

gap between the potential speedup when considering a straightforward implementation of the

0.1

1

10

100

1000

S
p
e
e
d
u
p

No-Ifs Innerloops

0.1

1

10

100

S
p
e
e
d
u
p

Ifs Innerloops

0.1

1

10

100

1000

S
p
e
e
d
u
p

No-Ifs Unrolled

0

1

10

Ifs Unrolled

Megablock (CPL based) Megablock (Zero Cycles) Megablock and Comm (Zero Cycles)

104

Megablock (CPL based) and the upper bound scenario (Zero Cycles). This gap suggests there

is ample head room for performance improving techniques (e.g., loop pipelining).

Figure 6.5 and Figure 6.6 present estimation speedups and Instructions Per Cycle (IPC),

when varying the number of available load/store units and the number of arithmetic-logical

units, respectively. In Figure 6.5, the mapping was done using as many arithmetic-logic units

as needed; in Figure 6.6 we limited the number of concurrent memory units to two. The lines

represent arithmetic average values over the speedup and overall IPC of each benchmark of

the set (in the sets where the unrolled option was used, we are considering all the benchmarks

of the set, and not just the benchmarks where unrolling had impact).

a) b)

Figure 6.5. Average a) speedup and b) IPC when varying the maximum number of load/store units per

row.

a) b)

Figure 6.6. Average a) speedup and b) IPC when varying the maximum number of arithmetic/logic units

per row.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 ∞

S
p
e
e
d
u
p

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 ∞

IP
C

Max. load/store units per line

no-ifs no-ifs unrolled ifs ifs-unrolled

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

S
p
e
e
d
u
p

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

IP
C

Max. arithmetic/logic units per line

no-ifs no-ifs unrolled ifs ifs-unrolled

105

In Appendix B, Section B-1, we present the results using the geometric mean instead. In

this case, the curves maintain their relative positions, although the absolute value is lower,

and the gap between the innerloops case and the unrolled case shortens.

Regarding the number of load/store units, the greatest increase in speedup is when passing

from 1 unit to 2 units (improvement of 11% for the no-ifs set with innerloops, and 17% when

using unrolling). There are further improvements when adding concurrent memory accesses.

However, the additional complexity of a larger number of concurrent memory operations can

outweigh the benefit in speedup.

The benefit of adding parallel FUs becomes less effective at an earlier point in the

innerloops case than the unrolled case. Unrolling exposes more parallelism, which can take

advantage of a higher number of parallel FUs. For the baseline case in the no-ifs set, with a

relatively small number of maximum FUs per row (e.g., 8 FUs) we can achieve 99%

(innerloops) and 94% (unrolled) of the speedup when using unlimited resources.

Considering a default setup with 2 concurrent memory units and 8 parallel FUs, with the

baseline system we achieve an average overall application speedup of 2.1× and 1.2× when

considering the no-ifs and the ifs set, for the case innerloops, respectively. We consider this

architecture setup can represent a typical implementation, and is referred herein as 8 FUs-

2Mem.

Unrolling increments the average speedup in both cases, to 2.7× and 1.4×, due to new

Megablocks being detected in benchmarks were no Megablocks were detected before (e.g.,

smooth), or by detecting Megablocks which increase the coverage relative to inner loop

detection (e.g., compress2, fdct, fir). In some cases, unrolling decreases the speedup (e.g.,

gdc2, popcmpr), but the increase in speedup in the other benchmarks compensates for these

cases. This behavior is related to loops which have a variable number of iterations. When

considering only inner loops, they can be successfully detected as Megablocks. However,

when unrolling, loops with a different number of iterations will be detected as different

Megablocks. If these Megablocks have SAI conflicts, the identification will not be as

effective as when using only inner loops. Thus, unrolling does not always mean improvement.

The previous results assume that the processor and the RPU work at the same clock

frequency. Figure 6.7 presents how the speedup varies when considering different ratios

between the clock of the processor and of the RPU, for the case where the mapping can assign

as many arithmetical-logical units as needed, and restricted to two memory operations per

106

cycle. For instance, a ratio of 1.5 means that if the processor is clocked at 100 MHz, the RPU

is clocked at 150 MHz.

Figure 6.7. Average speedup when varying the ratio between the RPU and GPP clock frequencies.

Doubling the frequency of the RPU with respect to the processor increases the speedup by

1.7× and 1.4×, for the no-ifs and the ifs set, respectively. The increase in the no-ifs set is

greater because its benchmarks spend a longer portion of the execution time in the RPU than

the benchmarks in the no-ifs set.

Figure 6.8 presents individual speedups for the baseline case, when using the setup 8 FUs-

2Mem. Overall, considering the complete set of 66 benchmarks, for the innerloops case we

achieve speedups from 0.5× to 4.8×, with an average speedup of 1.7× (or 1.4×, when using

the geometric mean). When activating unrolling of inner loops, we achieve speedups from

0.4× to 6.4×, with an average speedup of 2.2× (or 1.6×, when using the geometric mean).

After applying if-conversion and graph transformation techniques, the average speedups

increase slightly to 1.8× and 2.4× when using the arithmetic mean, and 1.6× and 2.1× when

using the geometric mean, for the innerloops and unrolled cases respectively.

When considering only the benchmarks which provide speedup, for the innerloops case

we achieve an average speedup of 2.4× (from 1.0× to 4.8×) over 31 benchmarks for the no-ifs

set, and an average speedup of 1.8× (from 1.0× to 4.8×) over 13 benchmarks for the ifs set.

When considering unrolling of inner loops, in the no-ifs set the average speedup increases to

3.1× (from 1.2× to 6.4×) over a set of 32 benchmarks, and in the ifs (adapted) set the average

speedup increases to 2.5× (from 1.0× to 4.8×) over a set of 22 benchmarks.

0

1

2

3

4

5

6

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
p
e
e
d
u
p

RPU/GPP clock ratio

no-ifs no-ifs unrolled ifs ifs-unrolled

107

Figure 6.8. Individual overall speedups for the baseline case, considering an RPU with a maximum of 8

parallel FUs and 2 load/store operations per cycle.

6.3.2 If-Conversion

We applied if-conversion techniques (see Section 4.5) to the source code of the ifs set. We

named the resulting set ifs (adapted). Table 6.7 shows the clock cycles needed to execute the

benchmarks in the MicroBlaze processor, after and before the if-conversion, and the ratio

between them. A value greater than one means an increase in the number of clock cycles for

the adapted benchmark. For all benchmarks in the ifs set, there was an increase in the

execution time, which ranged from a negligible increase (1.04× in conv_3x3) to more than

2.6

4.8

1.5

4.1

2.7

1.7

0.9
1.2

1.7

2.5

1.7 1.7

2.3

1.2

2.3

0.8

1.4

3.1

1.7

2.1

0.5 0.6

1.8

1.0

4.4

2.7

1.0

2.1
1.9 1.9

1.0

3.0

0.9

1.2

2.9

4.5 4.5

2.1

0

1

2

3

4

5

6

S
p
e
e
d
u
p

No-Ifs Innerloops

1.0 1.0

4.8

0.9

1.3

2.1

1.0 1.0
0.6

1.7

1.3

0.6 0.5 0.6 0.6

1.3
1.1

2.1

1.0

0.5

1.4

3.5

0.6
0.7

0.5

1.3
1.0

0

1

2

3

4

5

6

S
p
e
e
d
u
p

Ifs Innerloops

2.2

5.2

6.4

1.2

4.9

0.8
0.6 0.6

0.4 0.5

4.2

5.9

4.3

2.7
2.8

0

1

2

3

4

5

6

7

S
p
e
e
d
u
p

No-Ifs Unrolled

0.5
0.6 0.6

0.4

1.5

0.5 0.6
0.5

3.5

2.3

0.5

3.4

0.6 0.5 0.5

3.5

2.3

1.0

0.6

1.3

0

1

2

3

4

Ifs Unrolled

108

twice the execution time (2.29× in median_3x3). The examples with higher increases

correspond to cases whose kernels also have a higher number of if statements (see Table 6.2).

Benchmark
Original (#Clock

Cycles)
Adapted (#Clock

Cycles)
Ratio

adpcm_coder 61,841 92,308 1.49

adpcm_decoder 46,516 83,079 1.79

Boundary 180,730 291,024 1.61

bubble_sort 52,095 97,325 1.87

change_brightness 15,610 23,553 1.51

Compositing 48,283 56,293 1.17

conv_3x3 14,933 15,587 1.04

crc32 79,562 141,093 1.77

Divlu 456,708 533,093 1.17

gcd1 678,177 1,099,497 1.62

idct_8x8_12q4 150,679 308,851 2.05

isqrt1 183,449 190,403 1.04

isqrt2 185,919 243,093 1.31

isqrt3 29,527 31,993 1.08

isqrt4 15,932 21,493 1.35

mad_16x16 1,010,712 1,209,363 1.20

mad_8x8 261,145 312,339 1.20

Max 22,626 30,820 1.36

median_3x3 75,225 172,159 2.29

Modexp 1,875,680 2,485,980 1.33

motion_estimation 1,088,464 1,285,122 1.18

Perimeter 10,224 15,007 1.47

pix_sat 31,116 44,103 1.42

rgb_to_hsv_int 65,175 115,113 1.77

Rng 41,447 43,150 1.04

sad_16x16 39,515 47,195 1.19

sad_8x8 20,535 24,375 1.19

Sobel 49,953 59,534 1.19

viterbi_gsm 117,157 133,600 1.14

Average - - 1.41

Table 6.7. Cycle count and ratio of the ifs set, before and after if-conversion.

In this thesis, all speedups related to benchmarks which were modified by if-conversion

techniques, such as the ifs (adapted) set, are relative to the execution time of the original

unmodified program, and can be directly compared with all the other speedups (e.g., the

speedups of the ifs set). The IPC values reflect the changes in the adapted code.

109

Table 6.8 presents some of the characteristics of the benchmarks in the ifs (adapted) set

after adapting the source code of the ifs set.

Benchmark Kernel LOC #loops Max. Loop nesting level
#Input/Output

Arrays
adpcm_coder 66 1 0 1/1

adpcm_decoder 50 1 0 1/1

Boundary 13 2 1 1/2

bubble_sort 17 2 1 1/0

change_brightness 19 1 0 1/1

Compositing 15 1 0 2/1

conv_3x3 40 2 1 2/1

crc32 11 1 0 0/0

Divlu 15 1 0 0/0

gcd1 16 1 0 0/0

idct_8x8_12q4 177 4 1 1/1

isqrt1 33 1 0 0/0

isqrt2 15 1 0 0/0

isqrt3 17 1 0 0/0

isqrt4 15 1 0 0/0

mad_16x16 26 4 3 2/1

mad_8x8 25 4 3 2/1

Max 10 1 0 1/0

median_3x3 73 1 0 1/1

Modexp 11 1 0 0/0

motion_estimation 18 4 3 2/1

Perimeter 24 1 0 1/1

pix_sat 12 1 0 1/0

rgb_to_hsv_int 24 1 0 3/1

Rng 24 1 0 1/1

sad_16x16 11 2 1 1/1

sad_8x8 11 2 1 1/1

sobel 28 1 0 1/1

viterbi_gsm 29 4 2 3/2

Table 6.8. Characteristics of the benchmarks which form the set ifs (adapted).

Table 6.9 and Table 6.10 present detected Megablock characteristics of the ifs (adapted)

set, for the innerloops and unrolled cases, respectively. Applying if-conversion had two

effects in Megablock detection and execution. In one hand, it enabled the detection of

Megablocks on benchmarks were previously there were no Megablocks detected (e.g.,

adpcm_coder, adpcm_decoder, crc32, median_3x3). In the other hand, it decreased the

110

number of total detected Megablocks in other benchmarks, making the ratio between detected

Megablocks and executed Megablock equal to one (i.e., all detected Megablocks are

executed) in many cases (e.g., change_brightness, rgb_to_hsv_int, rng, sobel).

Benchmark
Detected/
Executed

Megablocks

Avg. It. per
call

Avg. Op.
per It.

 Avg. ILP
(Min/Max)

 Avg. CPL
(Min/Max)

adpcm_coder 1/1 1023.0 88.0 2.1 41.0

adpcm_decoder 1/1 1023.0 79.0 2.2 36.0

boundary 1/1 99.0 27.0 3.9 7.0

bubble_sort 1/1 62.0 23.0 2.3 10.0

change_brightness 1/1 99.0 22.0 1.7 13.0

compositing 1/1 199.0 27.0 1.7 16.0

conv_3x3 0/0 N.A. N.A. N/A N/A

crc32 1/1 7.0 12.0 2.0 6.0

divlu 1/1 31.0 15.0 1.9 8.0

gcd1 1/1 166.2 11.0 1.4 8.0

idct_8x8_12q4 2/2 7.0 355.0 15.3 (9.5/21.0) 21.0 (15/27)

isqrt1 2/1 1.1 70.0 0.7 99.0

isqrt2 1/1 15.0 13.0 2.2 6.0

isqrt3 1/1 15.0 17.0 2.1 8.0

isqrt4 1/1 5.0 32.0 2.7 12.0

mad_16x16 1/1 15.0 17.0 1.9 9.0

mad_8x8 1/1 7.0 17.0 1.9 9.0

max 1/1 2047.0 14.0 1.4 10.0

median_3x3 1/1 998.0 172.0 2.5 69.0

modexp 1/1 29.8 17.0 0.5 37.0

motion_estimation 1/1 15.0 19.0 2.1 9.0

perimeter 1/1 479.0 30.0 3.0 10.0

pix_sat 1/1 1999.0 21.0 1.5 14.0

rgb_to_hsv_int 1/1 499.0 162.0 3.4 47.0

rng 1/1 498.0 70.0 4.4 16.0

sad_16x16 1/1 15.0 17.0 1.9 9.0

sad_8x8 1/1 7.0 17.0 1.9 9.0

sobel 1/1 957.0 61.0 3.1 20.0

viterbi_gsm 2/2 7.0 41.0 4.8 (4.3/5.3) 8.0 (3/13)

Table 6.9. Megablock characteristics for the ifs-adapted set, only inner loops.

When comparing the ifs (adapted) set with the ifs set, the number of iterations generally

increases. As the if-conversion technique includes several paths in the same Megablock, it can

execute uninterruptedly in the RPU for a higher number of iterations.

111

Benchmark
Detected/
Executed

Megablocks

Avg. It.
per call

Avg. Op.
per It.

 Avg. ILP
(Min/Max)

 Avg. CPL
(Min/Max)

conv_3x3 1/1 149.0 99.0 4.5 22.0

crc32 2/1 999.0 109.0 2.2 50.0

idct_8x8_12q4 4/2 49.0 2855.5 82.2 (44.5/119.9) 32.0 (26/38)

isqrt1 4/1 1.7 82.0 0.5 169.0

isqrt2 2/1 999.0 225.0 2.3 99.0

isqrt3 2/1 99.0 287.0 2.5 114.0

isqrt4 2/1 99.0 208.0 2.8 75.0

mad_16x16 2/1 15.0 278.0 11.1 25.0

mad_8x8 2/1 7.0 142.0 8.4 17.0

motion_estimation 2/1 15.0 312.0 12.5 25.0

sad_16x16 2/1 15.0 277.0 11.1 25.0

sad_8x8 2/1 7.0 141.0 8.3 17.0

Table 6.10. Megablock characteristics for the ifs-adapted set when applying unrolling.

For the innerloops case, the average ILP decreases slightly (from 3.0 to 2.7), while in the

unrolled case, it increases (from 5.7 to 6.5). The change in ILP between the ifs and ifs

(adapted) sets is not significant (less than one operation), when considering the impact of

if-conversion on the value of ILP of the whole set. However, the individual ILP does not have

a general behavior and its increase or decrease depends on the benchmark.

The average CPL significantly increases, from 13.9 to 20.3 and from 16.3 to 35.9 for the

innerloops and unrolled cases, respectively, reaching similar values to the corresponding

average CPL of the no-ifs set (22.2 and 30.0).

Figure 6.9a) and Figure 6.9b) presents upper bound speedups for the ifs (adapted) set,

when considering only inner loops and inner loop unrolling, respectively. The average

speedup potential of the ifs set is one order of magnitude below the potential of the no-ifs set

(see Figure 6.4). After if-conversion the gap almost disappears.

If-conversion increases both the average speedup and the average IPC (see Figure 6.10

and Figure 6.11). For the ifs (adapted) set, the effect of enabling unrolling has a more

pronounced effect in the values of speedup. The higher steepness of the slop in the clock ratio

lines of the ifs (adapted) set (see Figure 6.12) is related to a higher portion of RPU execution.

Appendix B, Section B-2, presents the results using the geometric mean instead. In this case,

the performance of the adapted sets continues to be consistently above the performance of the

unmodified sets.

112

a)

b)

Figure 6.9. Upper bound speedups after if-conversion a) when considering inner loops and b) when

unrolling inner loops.

a) b)

Figure 6.10. Average a) speedup and b) IPC for adapted code when varying the maximum number of

load/store units per row.

0.1

1

10

100

1000
S
p
e
e
d
u
p

0

1

10

100

1000

S
p
e
e
d
u
p

Megablock (CPL based) Megablock (Zero Cycles) Megablock and Comm (Zero Cycles)

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 ∞

S
p
e
e
d
u
p

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 ∞

IP
C

Max. load/store units per line

ifs (adapted) ifs-unrolled (adapted) ifs ifs-unrolled

113

a) b)

Figure 6.11. Average a) speedup and b) IPC for adapted code when varying the maximum number of

arithmetic/logic units per row.

Figure 6.12. Average speedup for adapted code when varying the ratio between the RPU and GPP clock.

6.3.3 Graph Transformations

We can apply several transformations over the Megablock graph representation (see

Section 5.1). For instance, we can apply Constant Folding and Propagation (CFP) to reduce

the number of operations of the graph. We consider here three transformations in sequence:

assembly instructions to intermediate representation (IR), Constant Folding and Propagation

(IR + CFP), and Identity Simplifications (IR + CFP + IS).

When applying them to the innerloops case we did not observe significant changes.

However, the unrolled case offered more opportunities for the considered transformations.

Table 6.11 and Table 6.12 show the difference between the original number of instructions in

the Megablock and the number of operations after the transformations when enabling

unrolling, for the no-ifs and ifs (adapted) sets, respectively. A negative value represents a

decrease in the number of operations when compared with the original assembly instructions.

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

S
p
e
e
d
u
p

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

IP
C

Max. arithmetic/logic units per line

ifs (adapted) ifs-unrolled (adapted) ifs ifs-unrolled

0

0.5

1

1.5

2

2.5

3

3.5

4

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
p
e
e
d
u
p

RPU/GPP clock ratio

ifs (adapted) ifs-unrolled (adapted) ifs ifs-unrolled

114

Benchmark IR IR + CFP IR + CFP + IS
compress2 3% -14% -16%

corr_gen 26% 8% -9%

fdct_8x8 -9% -11% -13%

fft 30% 30% 15%

fir 20% -2% -17%

gcd2 0% 0% 0%

maxstr1 10% -13% -19%

maxstr2 2% -2% -20%

mulinv 1% -9% -41%

popcmpr 5% 4% 3%

smooth 14% -21% -40%

wave_horz 13% -1% -6%

wave_vert 18% -10% -24%

ycbcr422p_rgb 8% 1% -5%

average 10% -3% -14%

Table 6.11. Decrease in the number of Megablock operations, for the unrolled no-ifs set considering three

transformations.

Benchmark IR IR + CFP IR + CFP + IS
conv_3x3 22% 7% -5%

crc32 -16% -36% -38%

idct_8x8_12q4 25% 24% 23%

isqrt1 1% -7% -16%

isqrt2 1% -30% -31%

isqrt3 -4% -23% -24%

isqrt4 1% -15% -16%

mad_16x16 13% -7% -14%

mad_8x8 13% -7% -15%

motion_estimation 18% 0% -19%

sad_16x16 13% -7% -8%

sad_8x8 13% -7% -9%

average 7% -9% -14%

Table 6.12. Decrease in the number of Megablock operations, for the unrolled ifs-adapted set considering

three transformations.

The first column represents the ratio when the assembly instructions are converted into the

IR. The conversion can either increase or decrease the number of operations, depending on

the instructions being converted. Converting memory instructions increases the number of

operations, due to the unfolding of the instruction into the operations to calculate the address

and the memory operation. Other instructions, such as nops or auxiliary instructions such as

115

imm, contribute to a reduced number of operations. On average, we have an increase of 10%

and 7%, for the no-ifs and ifs (adapted) sets, after transforming the instructions to the IR.

Applying CFP generally decreases the number of operations, to -3% and -9% (no-ifs and

ifs (adapted)) of the original assembly instructions on average. In most cases, the reduction

provided by CFP is greater than the increase that results from transforming the instructions

into the IR. Applying the IS transformation further decreases the number of operations. The

effect is more pronounced in the no-ifs set than in the ifs (adapted) set. Considering this

sequence of transformations (i.e., IR+CFP+IS), the reduction is on average the same in both

sets (-14% for the no-ifs and ifs (adapted) sets)

When considering the unrolled case, we observed that generally the transformations

resulted in minor increases in the speedup and minor decreases in the IPC (see Figure 6.13,

Figure 6.14, and Figure 6.15).

For the 8 FUs-2Mem configuration there was an increase of 1.07× and 1.03×, and a

decrease in the IPC to 95% and 92% of the original value, for the no-ifs set and the ifs

(adapted) set, respectively. The increase in speedup can be attributed to a decrease in the CPL

of the Megablock in a few benchmarks. The most noticeable speedup was observed for the

benchmark fir (1.5×). The decrease in IPC was expected, since on average, the

transformations reduced the number of operations by 14%, for the affected Megablocks.

While these transformations did not affect performance significantly, they are useful to lower

the mapping effort, by reducing the size of the Megablocks to implement.

a) b)

Figure 6.13. Average a) speedup and b) IPC after graph transformations, when varying the maximum

number of load/store units per row

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 ∞

S
p
e
e
d
u
p

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 ∞

IP
C

Max. load/store units per line

noifs noifs-unrolled ifs (adapted) ifs-unrolled (adapted)

116

a) b)

Figure 6.14. Average a) speedup and b) IPC after graph transformations, when varying the maximum

number of arithmetic/logic units per row.

Figure 6.15. Average speedup after graph transformations, when varying the ratio between RPU and GPP

clock frequencies.

6.4 Hardware Module for Megablock Detection

We developed a proof-of-concept HDL generator which outputs VHDL for Megablock

Detectors, as depicted in Figure 5.3, according to several parameters (see Appendix C, Figure

C.4). Figure 6.16 presents the resources needed to implement the Megablock Detector

hardware module, when varying the maximum pattern size and the bit-width of the pattern

element.

For the explored parameter ranges, the number of LUTs and FFs resources increases

linearly with the increase of the maximum pattern size. Higher bit widths generally represent a

higher number of used resources, although the increase is more significant for FFs than for

LUTs. The behavior of the LUT resources is more irregular than the behavior of the FFs. We

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

S
p
e
e
d
u
p

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

IP
C

Max. arithmetic/logic units per line

noifs noifs-unrolled ifs (adapted) ifs-unrolled (adapted)

0

1

2

3

4

5

6

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
p
e
e
d
u
p

RPU/GPP clock ratio

noifs noifs-unrolled ifs (adapted) ifs-unrolled (adapted)

117

attribute this behavior to the way the synthesis tool maps certain FPGA primitives (e.g.,

SRLs), used in the VHDL code.

Figure 6.16. LUTs, FFs and estimated maximum frequencies for Megablock Detector hardware

designs.

For the base case with a maximum pattern size of 24 elements, and considering an address

space for instructions of 20 bits, the module needs 455 LUTs and 636 FFs, which represent

around 1% of the targeted FPGA (a Xilinx Spartan-6 LX45). These values include the

encoder and the state machine for determining the current state of the detector. The decrease

of the maximum clock frequency with the increase of the maximum pattern size was expected,

0

100

200

300

400

500

600

700

800

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

L
U
T
s

0

200

400

600

800

1000

1200

1400

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

F
F
s

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

F
re

q
.

(M
H

z)

Maximum Pattern Size

8 bits 16 bits 20 bits 32 bits

118

as higher values for the maximum pattern size implies more complex logic paths in some parts

of the Megablock Detection module (e.g., the comparison between the current pattern element

and all the positions in the FIFO). There are engineering solutions which can mitigate the

decrease in frequency, at the cost of some latency (e.g., by using fan-out trees).

However, the current implementation works at sufficient speed for the considered

scenarios. For instance, considering the base case of a maximum pattern size of 24 elements,

the maximum estimated clock frequency is between 134 MHz and 147 MHz (depending on

the bit-width of the elements), which is enough to meet the clock frequency of the MicroBlaze

soft processor.

Higher bit-widths generally produced designs with lower clock frequencies, although the

impact is relatively small. The maximum impact of the bit-width on the clock frequency is on

average 14% for the cases studied.

6.5 Megablock Pipelining

To demonstrate the proposed pipelining technique (presented in Section 5.6), we

developed a proof-of-concept VHDL generator which converts a Megablock graph into a

specialized hardware module (see Figure B.9). For a given Megablock, the tool can generate

two types of modules: an implementation of the SAr architecture described in Section 5.5.2,

and a pipelined version of the same architecture using the overlapping scheduled. The

generation of the pipelined architecture is performed after applying if-conversion (when

applicable) and the Megablock graph transformations described in Section 5.1. The version of

the generator used herein does not support Megablocks with memory operations.

For the first part of this section, we consider a set of simple benchmarks without memory

operations, named memoryless (i.e., compress1, count, even_ones, expand, fibonacci,

hamming_dist, popcmpr, reverse, and gcd1). We implemented Megablocks representing a

kernel of each benchmark, and estimated the clock cycles needed by the hardware module for

executing the pipelined and the non-pipelined versions of the considered Megablocks using

equation (5.1). We also estimated overall application speedups, taking into account all

communication overheads. Considering the set memoryless, we synthesized two versions of

the hardware module, with and without pipelining, to measure resource usage, confirm the

execution cycles and validate the approach. In the end of the this section, we present overall

119

speedup estimations after pipelining considering the no-ifs and the ifs (adapted) sets of the

previous section.

We consider that communication between the GPP and the hardware module is done

through FSLs (Fast Simplex Link) [90] using get and put instructions, one for each

Megablock input or output, respectively. Each one of these instructions takes one clock cycle

to execute [90]. Based on an implementation (presented in Appendix A) of the architecture of

Figure 5.10b), we estimate that the value for the term PartitionerCy in equation (5.4) has a

constant overhead of 8 clock cycles per Megablock call.

The SAr architecture can have as many FUs in a row and as many exits per row as needed.

We defined the execution cycles of the operations as identical to the clock cycles needed by

the MicroBlaze for equivalent instructions, when the processor is optimized for speed [90].

Similarly to other approaches [14], we assume each memory operation can be done in a single

clock cycle. We also consider that the RPU is connected to local memories which support up

to two simultaneous memory operations per cycle (e.g., dual-port BRAMs).

Table 6.13 presents the overall application IPC (Instructions per Cycle) achieved

considering the Megablock for each benchmark in different kinds of RPUs. As expected, the

IPC considering Megablocks and the RPU is higher than the IPC achieved by the MicroBlaze,

which is below 1. Since all the RPUs used have several FUs executing in parallel, the IPC

usually increases, proportionally to the ILP of the Megablock.

With pipelining, more than one row of the RPU is executing per clock cycle (in the steady

state, all FUs execute in parallel in each iteration), and the IPC relative to the non-pipelined

RPU increases. As expected, the IPC of overlapped schedule is consistently higher than the

IPC of the sequential schedule.

Table 6.14 summarizes the characteristics of the Megablock considered for each

benchmark of the memoryless set, when mapped to the non-pipelined version of the SAr. The

number of operations in the Megablocks ranges between 4 and 11. When mapped to the non-

pipelined SAr the number of rows ranged between 3 and 8, with the largest row having 3 FUs.

The number of iterations per call ranges from around 8 (popcmpr) to a few thousands

(fibonacci), having most benchmarks a number of iterations around 30.

120

Benchmark MicroBlaze
RPU Non-
Pipelined

RPU Pipelined
Sequential

RPU Pipelined
Overlapping

compress1 0.88 2.00 3.03 3.72
count 0.85 2.00 2.53 3.30

even_ones 0.85 2.00 3.36 4.93
expand 0.88 2.00 3.03 3.72

fibonacci 0.86 1.33 3.01 5.90
hamming_dist 0.85 2.00 3.36 4.93

popcmpr 0.88 1.50 3.41 4.80
reverse 0.87 2.33 3.03 3.96

gcd1 0.70 1.38 2.58 3.00

Table 6.13. IPC when the Megablock for each benchmark is executed in several platforms.

Benchmark FUs Rows Max. FUs p/ row
Avg. Iterations p/

call
compress1 8 4 3 29.0

count 6 3 2 31.0
even_ones 6 3 3 31.0

expand 8 4 3 29.0
fibonacci 4 3 2 2378.0

hamming_dist 6 3 3 31.0
popcmpr 6 4 2 8.4

reverse 7 3 3 31.0
gcd1 11 8 3 166.2

Table 6.14. Megablock mapping characteristics on the non-pipelined architecture.

Table 6.15 and Table 6.16 present a comparison between the overall speedup when using

non-pipelined and pipelined RPUs with a sequential and an overlapping schedule,

respectively. The first two columns, “Non-Pipelined Speedup” and “Pipelined Speedup”,

indicate the overall speedup achieved when considering an RPU without and with pipelining.

Benchmark Non-
Pipelined
Speedup

Pipelined
Speedup

Speedup
Improvement

Non-Pipelined
CPL (#clock

cycles)

Pipelined CPL
(Steady State)
(#clock cycles)

compress1 1.65 1.34 0.81 4 5
count 1.72 1.36 0.79 3 4
even_ones 1.68 1.63 0.97 3 3
expand 1.66 1.34 0.81 4 5
fibonacci 2.32 3.46 1.49 3 2
hamming_dist 1.66 1.62 0.97 3 3
popcmpr 1.00 1.03 1.03 4 3
Reverse 1.88 1.49 0.80 3 4
gcd1 0.97 1.06 1.10 8 7
Average 1.62 1.59 0.98 3.89 4

Table 6.15. Comparing a non-pipelined and a pipelined architecture with sequential scheduling.

121

Benchmark Non-
Pipelined
Speedup

Pipelined
Speedup

Speedup
Improvement

Non-Pipelined
CPL (#clock

cycles)

Pipelined CPL
(Steady State)
(#clock cycles)

compress1 1.65 1.54 0.93 4 4
count 1.72 1.64 0.95 3 3
even_ones 1.68 2.07 1.23 3 2
expand 1.66 1.54 0.93 4 4
fibonacci 2.32 6.83 2.95 3 1
hamming_dist 1.66 2.04 1.23 3 2
popcmpr 1.00 1.16 1.16 4 2
reverse 1.88 1.79 0.95 3 3
gcd1 0.97 1.22 1.26 8 6
average 1.62 2.20 1.36 3.89 3

Table 6.16. Comparing a non-pipelined and a pipelined architecture with overlapping scheduling.

Being each benchmark already accelerated by the RPU, the objective of Megablock

pipelining is to increase the speedup provided originally by the RPU. The column “Speedup

Improvement” represents the ratio between the non-pipelined speedup and the corresponding

pipelined speedup. A value of 1 means that there is no difference in speedup between the non-

pipelined and the pipelined version; a value greater than one represents an improvement in the

speedup; a value lower than one represents a slowdown.

For instance, we estimate an overall speedup of 1.66× for the benchmark hamming_dist,

before pipelining. With the pipelining overlapping schedule, the performance of the RPU can

be improved by 1.23×. This translates into an overall speedup of 2.04×, after pipelining.

In this set of simple benchmarks, when using sequential scheduling, performance

degradation happens in most of the cases after applying pipelining. Pipelining with

overlapping schedule leads consistently to better performance than the sequential schedule. It

is sometimes able to achieve speedups of benchmarks showing slowdowns with the sequential

schedule (evenones and hamming_dist).

However, even with overlapping scheduling, the improvements are not very significant.

With the exception of the fibonacci benchmark, which achieves a speedup increase from 2.3×

to 6.8× after pipelining (an improvement of around 3.0×), the other benchmarks achieve a

speedup of at most 2× (with improvements between 1.16× and 1.26×). In four benchmarks

there were still slowdowns. We attribute these results to the fact of considering Megablocks

without memory accesses. In those Megablocks, it is highly likely that the computations for

the update of the inputs represent a significant part of the critical path of the Megablock,

increasing the CPL of the Input Module (Section 5.6.2) and, consequently, the number of

cycles needed to complete an iteration. In Megablocks with memory accesses, it is more

122

likely for the update of inputs to be related to the update of the addresses for the memory

accesses. This can be confirmed with the CPL columns of Table 6.15 and Table 6.16. To

achieve improvements when pipelining, the number of cycles of the steady state of the

pipelined version must be lower than the number of cycles for a single original non-pipelined

iteration.

Figure 6.17 compares the resource increase between RPUs without and with pipelining

using an overlapping schedule.

Figure 6.17. FPGA resources increase when using pipelining with overlapping schedule over the non-

pipelined implementation.

The values show increases relative to the FPGA resources of the implementation of the

non-pipelined modules. In all cases, the pipelined implementation uses more FF (flip-flop)

resources (between 1.3× and 1.7× more resources), and generally, the LUTs (look-up table)

resources increase too (between 1.01× and 1.8× more resources). This is to be expected, as the

pipelined version includes additional modules (e.g., IM), which can have several stages. The

maximum clock frequencies in the pipelined modules have moderate decreases for most of

the benchmarks (between 0.71× and 1.02×).

Much of the increase in resources can be explained by the characteristics of the

benchmarks. Having the CPL of the pipelined module very close to the CPL of the non-

pipelined module indicates that the IM replicates most of the critical path of the LM. As these

are small benchmarks, the critical path represents a big portion of the Megablock body. We

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

LUTs FFs Max. freq. (MHz)

123

expect that in examples with memory accesses, the IM represents a small portion of the

Megablock body.

In one benchmark, reverse, the number of LUTs decreases. When the sub-modules of the

VHDL description of the pipelined version of this benchmark are implemented separately, the

number of LUTs is always the same or greater for the non-pipelined version. We suggest that

the number of LUTs decreases in the main module due to global hardware synthesis

optimizations. The increased number of FFs enables the synthesis tool to use the FF logic

(e.g., set and clear inputs) to implement some of the logic which was previously mapped to

LUTs.

When considering the set of 66 benchmarks used in Section 6.3, as the no-ifs and the ifs

(adapted) sets contain benchmarks with memory accesses, to apply the pipelining technique

we need to ensure the guarantees presented in Section 5.6.1 to avoid inter-iteration

dependencies. After examining the source code of the benchmarks, we discovered 5

benchmarks, out of 66 (7.6%), which did not respect the guarantees. A number of them

compute some state during an iteration which is needed in the next iteration, e.g., rng, viterbi,

md5. Others, e.g., bubble_sort, fft, modify parts of the input array and generate loop-carried

dependencies which cannot be removed without changing the algorithm. These 5 benchmarks

were not considered in the following results.

We observe significant increases in both speedup and IPC, when using pipelining with

overlapping schedule (see Figure 6.18, Figure 6.19, and Figure 6.20). The ifs (adapted) set in

particular shows great speedup potential when loop unrolling is enabled, which is similar or

greater than the speedup of the no-ifs set under the same conditions. Appendix B, Section B-3

and Section B-4, present the results using the geometric mean instead, for sequential

scheduling and overlapping scheduling, respectively. When considering the geometric mean,

the ifs (adapted) set shows lower speedups than the no-ifs set for the unrolled case. For the

innerloops case, the gap between the sets is larger.

In Figure 6.18, when going from a maximum of 8 memory operations to an unrestricted

number of memory operations there is a significant spike in IPC that is not followed by the

speedup. We attribute this behavior to a single IPC value which is distant from the rest of the

data, from the benchmark idct_8x8. The lines of IPC and speedup have a similar behavior in

Figure B.10 in Appendix B-4, which uses the geometric mean (which is less affected by

extreme values) instead of the arithmetic mean.

124

a) b)

Figure 6.18. Average a) speedup and b) IPC after pipelining with overlapping schedule, when varying the

maximum number of load/store units per row.

a) b)

Figure 6.19. Average a) speedup and b) IPC after pipelining with overlapping schedule, when varying the

maximum number of arithmetic/logic units per row.

Figure 6.20. Average speedup after pipelining with overlapping schedule, when varying the ratio between

RPU and GPP clock frequencies.

Figure 6.21 presents overall application speedups when considering pipelining with

overlapping schedule and the 8 FUs-2Mem configuration.

0

2

4

6

8

10

1 2 3 4 5 6 7 8 ∞

S
p
e
e
d
u
p

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 ∞

IP
C

Max. load/store units per line

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

S
p
e
e
d
u
p

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

IP
C

Max. arithmetic/logic units per line

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)

0

2

4

6

8

10

12

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
p
e
e
d
u
p

RPU/GPP clock ratio

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)

125

We observe that in several cases, the pipelining contribution amplifies the improvement of

the RPU by a factor of 2 or more. For instance, we estimate a speedup of 3× for the

benchmark vecsum, before pipelining. With an overlapping schedule, the performance of the

RPU can be improved by 1.96×. This translates into an overall speedup of 5.8×, after

pipelining.

Figure 6.21. Individual overall speedups for a pipelined architecture with overlapping schedule,

considering a maximum of 8 parallel arithmetic/logic FUs and 2 load/store operations per clock cycle.

There are noticeable speedups after pipelining, for several benchmarks. For the innerloops

case we have change_brightness, from 1.6× to 9.3×; checkbits, from 4.1× to 12.4×;

3.1

5.7

1.5
2.0

1.5

0.4

1.1
1.6

2.5
2.1

1.5

2.6

6.8

0.6

1.3

9.1

2.0 2.1

0.4 0.4 0.4

4.0

1.2

2.0

6.0

1.8

1.0

5.8

0.2

1.1

3.8

5.5 5.5

3.7

0

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
u
p

No-Ifs Innerloops
12.4 28.5

1.4 1.2

3.5

4.7

9.3

1.0
0.6

1.2 1.2
0.6

0.2

1.0 1.1
0.5

0.9
0.6

1.1

2.3

0.7
1.2

2.2

7.4
7.0

0.9
0.6

9.7

2.4

0

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
u
p

Ifs Innerloops

7.8

6.7

9.6

0.6 0.5 0.4 0.2 0.4

6.0 6.1

3.3

6.6

0

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
u
p

No-Ifs Unrolled
32.0 11.5

1.4 1.2

7.2

0.8
0.4

1.7
1.2

0.7

2.0

7.4
7.0

1.5
1.1

9.7

7.0

0

1

2

3

4

5

6

7

8

9

10

Ifs Unrolled
25.3 18.132.0

126

compositing, from 1.6× to 9.3×; fibonacci, from 2.3× to 6.8×; gouraud, from 3.1× to 9.1×;

quantize, from 2.2× to 6×; and rgb_to_hsv_int, from 2.3× to 7.0×. For the unrolled case we

have compress2, from 2.5× to 32×; crc32, from 1.6× to 32.0×; isqrt3, from 2.5× to 25.3×;

isqrt4, from 2.0× to 18.1×; and pix_sat, from 1.1× to 7.4×.

These speedups can be explained by two factors presented in Table 6.17. The first factor is

the ratio between the average CPL of the executed Megablocks in the baseline scenario (CPL

(Baseline) column), and the average number of cycles of the steady state when the

Megablocks execute using the overlapping schedule (Steady State Latency column). The ratio

between these two values (Ratio column) is an upper-bound for the possible increase in

speedup when applying pipelining. For instance, crc32 went from a speedup of 1.6× to a

speedup of 32× after pipelining, which represents an improvement of 20× for a corresponding

ratio of 24.5×. The second factor is the number of average iterations per Megablock call (last

column). Note that in all cases, the number of average iterations is high (above 99). When

using pipelining, the improvement comes from execution in the steady state. The higher the

portion of execution is spent in the steady state (instead of the prologue), the closer the

improvement is to the upper bound speedup given by the ratio between the baseline CPL and

the steady state latency.

Benchmark
CPL (Baseline)
(#clock cycles)

Steady State
Latency

(#clock cycles)
Ratio

Speedup
Improvement

Avg. It. p/
call

change_brightness 12 2 6.0 5.81 99

checkbits 16 4 4.0 3.02 166

compositing 15 2 7.5 5.81 199

fibonacci 3 1 3.0 2.96 2,378

gouraud 6 2 3.0 2.94 1,999

quantize 6 2 3.0 2.69 199

rgb_to_hsv_int 55 16 3.4 3.04 499

compress2 65 4 16.3 12.80 999

crc32 49 2 24.5 20.00 109

isqrt3 112 2 56.0 10.12 99

isqrt4 73 2 36.5 9.05 99

pix_sat 14 2 7.0 6.73 2,000

Table 6.17. CPL comparison between baseline and pipelined with overlapping schedule.

127

Overall, we could apply the loop pipelining technique to 61 of the 66 benchmarks

originally considered in this chapter. Considering this subset of 61 benchmarks and loop

pipelining with overlapping schedule, for the innerloops case we achieve speedups from 0.2×

to 28.5×, with an average speedup of 3.1× (or 1.8×, when using the geometric mean). When

activating unrolling of inner loops, we achieve speedups from 0.2× to 32×, with an average

speedup of 5.6× (or 3×, when using the geometric mean).

When considering only the benchmarks which provide speedup, for the innerloops case

we achieve an average speedup of 4.4× (from 1.5× to 28.5×) over a set of 28 benchmarks for

the no-ifs set, and an average speedup of 3.6× (from 1.1× to 9.7×) over a set of 15 benchmarks

for the ifs (adapted) set. When considering unrolling of inner loops, in the no-ifs set the

average speedup increases to 6.2× (from 1.5× to 32×) over a set of 32 benchmarks, and in the

ifs (adapted) set the average speedup increases to 6.5× (from 1.1× to 32×) over a set of 22

benchmarks.

Combining the techniques previously presented (inner loop unrolling, if-conversion, graph

transformations, loop pipelining) we were able to achieve results on par to those found in

literature. For instance, Warp [13], the work we believe closest to our approach (e.g., uses

loops as detection unit), reports an average speedup of 6.3× over a set of 15 benchmarks. Paek

et al. [58], which also implements loop pipelining in CGRAs, but on a static context, report an

average speedup of 9.4× when using examples of the DSPstone benchmark suite [127].

6.6 Application Examples

6.6.1 3D Path Planning Application

Using the same approach of Section 6.3, we applied the dynamic partitioning technique to

an airborne collision avoidance application, known as 3D Path Planning (herein referred as

3dpp), provided by Honeywell [128]. It consists of 841 lines of C code, distributed over 10

files and 48 functions. A step of the application requires 50,601,067 MicroBlaze clock cycles.

Most of the application time (~80%) is spent in a single function, gridIterate, which has

61 lines of C code and a nested loop with 3 levels. The function was modified with the

if-conversion technique described in Section 4.5. When using this technique, usually the

software execution time of the program increases, due to the execution of all paths of the loop

in each iteration. In this case, it reduced slightly, representing 99.5% of the previous

128

execution time. We consider that two factors contribute to this effect: first, the loop contains

one frequent path which is computationally intensive, while the other paths are rarely taken

and are very lightweight (e.g., attribution of a constant to a variable). This contributes to an

execution time of the function that is at least similar to the original. The reduction comes from

the loop not having branches, eliminating the branch misprediction penalties which happen in

the original function.

Table 6.18 presents the characteristics extracted from the 3dpp application, when

considering the default setup for Megablock detection of a maximum pattern size of 24, and

the basic block as detection unit. In the current implementation, 10 Megablocks are

responsible for about 64% and 87% of the software execution time, when considering inner

loops or loop unrolling, respectively. We obtained a speedup of 1.1× when mapping only

innermost loops, and a speedup of 2× when unrolling innermost loops. Most of the speedup

improvement of the unrolled case comes from the higher coverage and higher number of

iterations per call, and higher number of operations executed per iteration (reducing

overhead). The average ILP for both cases is above 4, a positive contributor to the overall

speedup.

Unrolled
Loops

Speed
up

Coverage Megablocks
Det./Exec.

Avg. It.
p/ call

Avg. Op.
p/ It.

 Avg. ILP
(Min/Max)

 Avg. CPL
(Min/Max)

No 1.1 64% 11/10 9.4 36.0 4.1 (2.5/7.0) 9.3 (2/33)

Yes 2.0 87% 22/10 17.1 153.2 4.4 (2.9/8.0) 39.6 (2/165)

Table 6.18. Characteristics for the execution of the application 3dpp.

6.6.2 Dynamic Partitioning on an Embedded Processor – fir

We have developed Java tools (see Appendix C) which implement and simulate some of

the phases of dynamic partitioning (e.g., detection, translation). Additionally, we have ported

the tools to the Android platform [129] and built a software version of the Megablock

Detector in C language. This way, it was possible to measure the execution time of the several

steps of these phases, when executing on embedded processors.

In this section we focus on an application and present examples of the several steps for

that application. We selected the fir benchmark since it was complex enough to be an

interesting example, and small enough to illustrate the process.

Figure 6.22 presents the C code for the kernel of the fir function. After compiling the code

according to the setup described in Section 6.1, we simulated it so we could detect

129

Megablocks. We used the default setup for Megablock detection (24 as maximum pattern

size, and basic block as detection unit) and enabled loop unrolling. Two Megablocks where

detected, one representing 0.1% of the software execution time, and the other representing

around 98% of the software execution time. The first Megablock was discarded, only the

latter was considered in this example.

void fir_original(int x[], int c[], int M1, int N1, int *y) {

int j, i;

y[0]=c[0]*x[0];

y[1]= c[0]*x[1]+c[1]*x[0];

y[2]= c[0]*x[2]+c[1]*x[1]+c[2]*x[0];

for(j=3; j<M1; j++) {

 int output=0;

 for(i=0; i<N1; i++) {

 output+=c[i]*x[j-i];

 }

 y[j] = output;

}

}

Figure 6.22. C code for a fir function.

Figure 6.23 shows the considered Megablock, and contains three columns of information.

The first column shows the addresses of the instructions of the Megablock body; the second

column shows the assembly instructions executed by the MicroBlaze processor that form the

Megablock; and the third column shows the corresponding graph operations when

transforming the code to the graph representation. When an assembly instruction is

represented by two or more graph operations (e.g., lw, lwi, sw), the additional graph

operations appear separated by commas.

The instruction addresses of the first column that are in bold (six in total) represent the

addresses needed to detect the Megablock. They correspond to the first address of the six

basic blocks that represent the Megablock. As explained in Section 4.3, two repetitions of the

same sequence of addresses are enough to detect a Megablock, which means that 12 addresses

where needed to detect this Megablock.

130

Address Instruction Graph Op.

0x00000208 bleid r9, 52 → 0:lessOrEqualZero

0x0000020C addk r10, r0, r0 → 1:add

0x00000210 addk r8, r6, r0 → 2:add

0x00000214 addk r7, r10, r0 → 3:add

0x00000218 bslli r3, r7, 1026 → 4:sll

0x0000021C lwi r5, r8, 0 → 5:add, 6:load

0x00000220 lw r4, r11, r3 → 7:add, 8:load

0x00000224 addik r7, r7, 1 → 9:add

0x00000228 addik r8, r8, -4 → 10:add

0x0000022C mul r4, r4, r5 → 11:mul

0x00000230 rsubk r18, r7, r9 → 12:rsub_carry

0x00000234 bneid r18, -28 → 13:equalZero

0x00000238 addk r10, r10, r4 → 14:add

0x00000218 bslli r3, r7, 1026 → 15:sll

0x0000021C lwi r5, r8, 0 → 16:add, 17:load

0x00000220 lw r4, r11, r3 → 18:add, 19:load

0x00000224 addik r7, r7, 1 → 20:add

0x00000228 addik r8, r8, -4 → 21:add

0x0000022C mul r4, r4, r5 → 22:mul

0x00000230 rsubk r18, r7, r9 → 23:rsub_carry

0x00000234 bneid r18, -28 → 24:equalZero

0x00000238 addk r10, r10, r4 → 25:add

0x00000218 bslli r3, r7, 1026 → 26:sll

0x0000021C lwi r5, r8, 0 → 27:add, 28:load

0x00000220 lw r4, r11, r3 → 29:add, 30:load

0x00000224 addik r7, r7, 1 → 31:add

0x00000228 addik r8, r8, -4 → 32:add

0x0000022C mul r4, r4, r5 → 33:mul

0x00000230 rsubk r18, r7, r9 → 34:rsub_carry

0x00000234 bneid r18, -28 → 35:equalZero

0x00000238 addk r10, r10, r4 → 36:add

0x00000218 bslli r3, r7, 1026 → 37:sll

0x0000021C lwi r5, r8, 0 → 38:add, 39:load

0x00000220 lw r4, r11, r3 → 40:add, 41:load

0x00000224 addik r7, r7, 1 → 42:add

0x00000228 addik r8, r8, -4 → 43:add

0x0000022C mul r4, r4, r5 → 44:mul

0x00000230 rsubk r18, r7, r9 → 45:rsub_carry

0x00000234 bneid r18, -28 → 46:notEqualZero

0x00000238 addk r10, r10, r4 → 47:add

0x0000023C bslli r3, r12, 1026 → 48:sll

0x00000240 addik r12, r12, 1 → 49:add

0x00000244 sw r10, r19, r3 → 50:add, 51:store

0x00000248 rsubk r18, r12, r22 → 52:rsub_carry

0x0000024C bneid r18, -68 → 53:equalZero

0x00000250 addik r6, r6, 4 → 54:add

Figure 6.23. Assembly code and corresponding graph operations for the fir Megablock.

131

Table 6.19 contains execution times, in milliseconds, for several implementations of the

pattern detector used to detect Megablocks, executing on different targets. The execution

times represent the time each implementation needed to process the given number of

addresses (column #Addresses). The given addresses are repetitions of the 6 address sequence

of the fir Megablock. The values in the column Hardware Module at 50MHz correspond to an

implementation of the architecture described in Section 5.2, clocked at 50 MHz. It can

process one address every clock cycle. The column MicroBlaze at 50MHz represents a C

implementation of the algorithm in Figure 4.4, running directly on a MicroBlaze processor

clocked at 50 MHz. Column Cortex-A8 at 1GHz corresponds to an implementation of the

same algorithm in Java, running on a Cortex-A8 clocked at 1GHz, over the Android 2.2

platform.

#Addresses
Time using

Hardware Module
at 50MHz (ms)

Time using a
MicroBlaze at

50MHz – C (ms)

Time using a
Cortex-A8 at

1GHz – Java (ms)

Speedup (HW
vs. MicroBlaze /

HW vs. A8)
12 0.0002 2.7 0.6 11,251/2,500
24 0.0005 5.7 1.3 11,963/2,708
48 0.0010 14.0 2.8 14,594/2,917
96 0.0019 30.8 5.9 16,036/3,073

192 0.0038 64.3 12.5 16,757/3,255
384 0.0077 131.5 24.8 17,118/3,229
768 0.0154 265.7 78.7 17,298/5,124

Table 6.19. Execution times for several implementations of the pattern detector for Megablocks.

Generally, the execution times grow linearly with the input (doubling the size of the input

doubles the execution time). There is an exception in the Cortex case, where going from 384

addresses to 768 addresses tripled the execution time, instead of doubling. We think this is

due to calls from the system to the garbage collector, during execution of the detector.

When comparing execution speeds, the hardware module is much faster than the software

implementations: around 3,000× faster than the Cortex case and around 16,000× faster than

the MicroBlaze case. This difference can be explained by the highly parallel design of the

hardware module, and by the software version not being fully optimized for the target

platforms. For the tested cases, excluding the last row, the execution time of the Cortex

processor is around 5× faster than the execution time of the MicroBlaze processor.

Table 6.20 shows average execution times, in milliseconds, when running a Java

implementation of the Translation steps described in Section 5.3, on a Cortex-A8 clocked at 1

GHz over an Android 2.2 platform. The Translation phase took, on average, about 79 ms to

132

transform the assembly code of the Megablock in Figure 6.23 into a mapping configuration

for architectures of the kind described in Sections 5.5.1 and 5.5.4. The most expensive

operation is the conversion from assembly code to the graph intermediate representation,

representing 58% of the execution time. Next we have Placement and the Transform, each

one taking 20% and 12% of the time, respectively. The most light-weight steps are the

Routing and the Normalization, each one with 6% and 4% of the total execution time.

Using the values of Table 6.19 to extrapolate an execution time for the case where we use

an implementation in C, executing in a MicroBlaze at 50 MHz, we obtain a total time for the

Translation phase of about 400 ms.

Normalize
Graph

Converter
Transform

Mapping
Total

Placement Routing
3.03 46.00 9.71 15.45 4.89 79.09

Table 6.20. Average execution times in milliseconds of the Translation steps.

6.7 Summary

In this chapter we analyzed and evaluated the use of the Megablock as a loop for Dynamic

Hardware/Software Partitioning. We used an extensive set of benchmarks from embedded

system domains, and compared our loop detection method with the method used by Warp

[125]. We concluded that the Megablock achieves coverage values close to the Warp method,

while providing loops with straight-forward and clearly defined control-flow, which can be

easily converted to data-flow representations.

We estimated the overall application speedup achievable with the Megablock, considering

66 benchmarks and several scenarios. Considering default mapping parameters, in the

baseline scenario we estimate a speedup of 1.7× and 2.2× for the innerloops and the unrolled

cases, respectively. Applying graph transformations and if-conversion increases the overall

speedup to 1.8× and 2.4× for the innerloops and the unrolled cases, respectively. Graph

transformations did not change the performance significantly, but helped in reducing the

number of operations of the Megablock, which can reduce the mapping effort and

configuration sizes.

Applying the Megablock pipelining technique can significantly improve the overall

application speedup. Considering this subset of 61 benchmarks and loop pipelining with

overlapping schedule, we estimate an average speedup of 3.1× and 5.6× for the innerloops

133

and the unrolled cases, respectively. From the proposed optimization techniques, Megablock

pipelining was the one with the highest impact on performance.

We observed that, for the architecture parameters, the access to memory was a more

limiting factor for the speedup than the number of available arithmetical/logical FUs. The

speedup values stabilized very quickly for low number of arithmetical/logical FUs (e.g.,

between 4 and 8 FUs), while there was still noticeable increases in speedup when considering

the scenario with unbounded memory accesses. However, we consider that the differences

were not high enough as to justify the increased complexity of using more than 2 concurrent

memory accesses per cycle. The biggest improvement in speedup, when considering the

number of concurrent memory accesses, was consistently when going from 1 memory access

to 2 concurrent memory accesses.

135

7 Conclusions

The main objective of this thesis was to research Dynamic Hardware/Software

Partitioning (DHSP) techniques, as a way to take advantage of a reconfigurable processing

unit (RPU) acting as a coprocessor in a general purpose processor (GPP) based embedded

computing system. The research efforts and experiments were focused on the development of

algorithms and techniques in the context of dynamic partitioning, and on the speedups

resultant with the migration of computations from the GPP to the RPU.

We proposed novel techniques for dynamically partitioning applications at the binary

level, as well as addressing the automatic migration of computations during runtime from a

GPP to the RPU. As to maximize the impact of dynamic partitioning one must consider large

portions of program execution, an important aspect of this work was to propose a novel kind

of loop structure, attractive for architectures with native support to high-degrees of

parallelism. This led us to the Megablock, a loop formed by repetitive sequences of

instructions present during program execution. We found that the Megablock can represent

significant portions of the program execution in most benchmarks, justifying its use as a

detection unit for dynamic partitioning. Furthermore, being the Megablock a loop, it is

inherently akin to hardware reuse and loop pipelining.

The presented work proposes techniques for the detection, identification, implementation,

and transformation of Megablocks, as well as a study of the impact of using the Megablock as

a detection unit over an extensive set of benchmarks consisting of 66 functions/kernels. Using

an automated approach, we were able to evaluate and explore the techniques proposed in this

thesis over this set of benchmarks in a variety of situations.

One of the objectives of this thesis was to test a general approach for dynamic

partitioning. To evaluate the impact on automatically moving streams of instructions executed

by a GPP to an RPU, we use a set of benchmarks which covers many situations and code

characteristics, over several execution scenarios. Rather than being tied to a specific RPU, this

thesis explored a number of architecture models, from specific implementations suitable for

the today’s FPGA technology, to models possible only on future reconfigurable fabrics. We

believe that the work presented tackle these issues by the following reasons:

136

1) As a general principle, we avoided limiting the scope of the proposed techniques when

possible. For instance, the presented methodology can be applied to either online or

offline scenarios.

2) The Megablocks are detected through a pattern-matching technique which is fully

agnostic to the instruction format of the GPP and can be applied to traces of

instructions of other processors.

3) Before optimizations and mapping, Megablocks are first converted to an RPU

independent Intermediate Representation (IR). To evaluate our techniques in a

different GPP, we only need a translator from the specific GPP instructions to the IR.

4) Although we provide a concrete example for the if-conversion technique (the

language-processor pair C-MicroBlaze), we propose general transformation rules

which can be applied to other language-processor combinations.

5) Finally, in this thesis we consider two distinct Megablock implementations: a first one

using custom designs obtained by a VHDL representation of a Megablock with the

option to support pipelining (see Chapter 6, Section 6.4); and a second one considering

a CGRA coprocessor, suitable for executing different Megablocks (see Appendix A).

In order to improve performance, we present a technique for pipelining Megablocks. The

technique simplifies the creation of a pipelined version of a loop by taking advantage of the

characteristics of the Megablock (e.g., the loop contains only one path). It also presents new

ideas, such as avoiding the implementation of an epilog by using atomic loop iterations, or

delay the stores to the end of the iteration to avoid output dependencies and simplify the

implementation of atomic iterations.

The analysis of the related work shows that dynamic partitioning can be useful in

embedded systems. Although it is unlikely that an approach for automatic optimization of

general computations will have better results than a handcrafted solution, the improvements

achieved by dynamic partitioning can be enough to allow applications to generally take

advantage of the existence of reconfigurable hardware in embedded computing systems, as

mapping critical sections by hand for each application and device is too costly to be widely

used.

Warp [13], the work we believe closest to our approach (e.g., uses loops as detection unit),

reports an average speedup of 6.3× over a set of 15 benchmarks. CCA [91] and DIM [14]

report a speedup of 2.3× and 2.5×, respectively. A comparison with similar benchmarks

137

indicate that we were able to achieve results on par with those found in literature, thanks to

techniques such as inner loop unrolling and loop pipelining.

Our evaluations consider a RPU coupled to a soft-core microprocessor and the techniques

proposed in this thesis (e.g., graph transformations, loop pipelining). When using the

complete set of 66 benchmarks and the baseline case with the default RPU architecture (see

Chapter 6, Section 6.3.1), for the innerloops case we achieve speedups from 0.5× to 4.8×,

with an average speedup of 1.7× (or 1.4×, when using the geometric mean). When activating

unrolling of inner loops, we achieve speedups from 0.4× to 6.4×, with an average speedup of

2.2× (or 1.6×, when using the geometric mean). After applying if-conversion and graph

transformation techniques, the average speedups increase slightly to 1.8× and 2.4× when

using the arithmetic mean, and 1.6× and 2.1× when using the geometric mean, for the

innerloops and unrolled cases respectively.

We could apply the loop pipelining technique to 61 of the 66 benchmarks in the set.

Considering this subset of 61 benchmarks and loop pipelining with overlapping schedule, for

the innerloops case we achieve speedups from 0.2× to 28.5×, with an average speedup of 3.1×

(or 1.8×, when using the geometric mean). When activating unrolling of inner loops, we

achieve speedups from 0.2× to 32×, with an average speedup of 5.6× (or 3×, when using the

geometric mean).

Furthermore, we have implemented a prototype system for dynamic partitioning, based on

an FPGA board (see Appendix A). The prototype is fully functional and runtime

reconfigurable, and is capable of transparently moving computations from a GPP to a RPU

without changing the executable binary. Although the prototype results were contaminated by

high memory access latencies, we estimate reasonable speedups when the CPU directly

accesses data stored in local memories, and with the current type of coupling, the system is

easily adaptable to other CPUs. These results clearly show a strong evidence of the

importance of the techniques proposed in this thesis.

7.1 Future Work

In this thesis we deeply explored the Megablock. However, there is room to justify further

research, either with the proposed version of the Megablock, or with a new, extended version.

For instance, the address conflicts which can appear when using the Single Address

Identification (SAI) method (Chapter 5, Section 5.4) usually indicate different paths of the

138

same loop. This can be an opportunity for a new loop structure, which supports several paths

found during runtime; or we can do Megablock merging and automatically create a single

Megablock out of Megablocks with the same start address, by using if-conversion techniques.

The detection method, together with the representation, can be extended to detect which

sections of a Megablock correspond to an inner loop. With this information, it can be possible

to reroll inner loops which are too big to fit the target hardware; more importantly, it would be

a step forward for supporting inner loops with a variable number of iterations. Currently, if

loop unrolling is enabled, each different iteration count of unrolled inner loops is detected as a

distinct Megablock.

The transformations that can be used over the Intermediate Representation can be further

explored. We can use transformations that, in addition to the reduction of the number of

operations or the critical path length, also focus other aspects, such as increasing ILP [26].

Transformations can be also used to tailor the Megablock to specific units in the target

architecture; to evaluate whether some inputs of a Megablock are constant through the entire

loop, and specialize the Megablock according to those constants. Merging Megablocks can

enable further transformations. For instance, the gcc compiler for the Xilinx MicroBlaze soft-

core processor includes branch instructions in the code to convert 32-bit to 64-bit integer

values. This could be detected and simplified, removing one of the paths of a merged

Megablock.

As expected, memory accesses were a bottleneck in many programs and future work

should consider memory analysis techniques, such as alias analysis. Alias analysis can

determine if two memory operations refer to the same location (address). This enables

transformations such as elimination of redundant loads [130] or scalar replacement, which

are very effective in the presence of code inserted by the compiler for register spilling (i.e.,

when due to register pressure, temporary variables are stored in memory). Alternatively, we

may be able to analyze and deal less conservatively with data-dependences in order to

increase the parallelism degree. Alias analysis is a well know optimization, but its application

is limited when used in static compilers [131] due to memory address ambiguity. Since some

of the memory addresses that are ambiguous at compile time can be resolved at runtime,

applying this optimization dynamically can open new opportunities.

The use of source-to-source transformations to implement if-conversion presents a way to

do hardware/software co-design where instead of using custom software compilation tools,

new programming languages or language extensions, it is possible to write plain code in the

139

target language in a suitable way for the hardware, without having to spend time in low-level

system design details such as the communication between the processor and the coprocessor.

Programs can be rewritten in the same target source code to better fit Megablock detection

and/or the mapping to the coprocessor. One possible research avenue is the use of multiple

binaries for the same function and to opt dynamically to the more suitable binary.

Runtime identification of certain computation patterns may allow further improvements

and/or the resolution to apply a certain optimization technique. One example would be the

identification that the computations being executed are related to loads from a memory region

followed by computations and then storing to a distinct, not overlapping, memory region. This

identification may allow more aggressive loop pipelining techniques.

The mapping process can benefit from the use of additional information provided by the

compiler that generated the binaries, or by the analysis of the binaries prior to their execution.

This additional information would be beneficial for most Megablock optimizations. As an

example, the identification of the array variable associated with each load/store in the

execution trace would help loop pipelining and the use of memory banks.

A more advanced approach would use data speculation to obtain optimized Megablocks.

During runtime, the system may track data ranges and specific values for the registers and

based on the probabilities may optimize Megablocks considering a certain value in a register.

This may be a viable option for Megablocks without side-effects as in this case roll-back is

simplified.

141

8 References

[1] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M. W. Naouar,

"FPGAs in Industrial Control Applications," in IEEE Transactions on Industrial
Informatics, vol. 7, pp. 224-243, May 2011.

[2] M. D. Hill and M. R. Marty, "Amdahl's law in the multicore era," in Computer, vol.
41, pp. 33-38, 2008.

[3] Y. Patt, "Future Microprocessors: Multi-core, Mega-nonsense, and What We Must Do
Differently Moving Forward," in Parallel@Illinois Distinguished Lecture Series,
2010.

[4] Z. Guo, W. Najjar, F. Vahid, and K. Vissers, "A quantitative analysis of the speedup
factors of FPGAs over processors," in FPGA '04: Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field programmable gate arrays,
Monterey, California, USA, 2004, pp. 162-170.

[5] J. Henkel, "A low power hardware/software partitioning approach for core-based
embedded systems," in Proceedings of the 36th annual ACM/IEEE Design
Automation Conference, 1999, pp. 122-127.

[6] S. Hauck and A. DeHon, Reconfigurable computing: the theory and practice of
FPGA-based computation: Morgan Kaufmann Pub, 2008.

[7] L. Józwiak, N. Nedjah, and M. Figueroa, "Modern development methods and tools for
embedded reconfigurable systems: A survey," in Integration, the VLSI Journal, vol.
43, pp. 1-33, January 2010.

[8] T. Wiangtong, P. Y. K. Cheung, and W. Luk, "Hardware/Software Codesign: a
Systematic Approach Targeting Data-intensive Applications," in IEEE Signal
Processing Magazine, vol. 22, pp. 14-22, 2005.

[9] G. Stitt, F. Vahid, and S. Nematbakhsh, "Energy savings and speedups from
partitioning critical software loops to hardware in embedded systems," in ACM
Transactions on Embedded Computing Systems (TECS), vol. 3, pp. 218-232, 2004.

[10] M. Graphics, "Catapult C synthesis," in http://www.mentor.com, 2008.

[11] Y. Ben-Asher, N. Rotem, and E. Shochat, "Finding the best compromise in compiling
compound loops to Verilog," in Journal of Systems Architecture, vol. 56, pp. 474-486,
2010.

142

[12] S. Ben Othman, A. Ben Salem, and S. Ben Saoud, "Hw acceleration for FPGA-based
drive controllers," in Industrial Electronics (ISIE), 2010 IEEE International
Symposium on, pp. 196-201, 2010.

[13] R. Lysecky, G. Stitt, and F. Vahid, "Warp Processors," in ACM Trans. Des. Autom.
Electron. Syst., vol. 11, pp. 659-681, 2006.

[14] A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, "Transparent
reconfigurable acceleration for heterogeneous embedded applications," in Proc. Conf.
Design, Automation and Test in Europe (DATE'08), Munich, Germany, 2008, pp.
1208-1213.

[15] T. Lindholm and F. Yellin, The Java virtual machine specification: Prentice Hall PTR,
1999.

[16] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox,
"Design of the Java HotSpot™ client compiler for Java 6," in ACM Transactions on
Architecture and Code Optimization (TACO), vol. 5, p. 7, 2008.

[17] J. M. Bull, L. A. Smith, L. Pottage, and R. Freeman, "Benchmarking Java against C
and Fortran for scientific applications," in Proceedings of the 2001 joint ACM-
ISCOPE conference on Java Grande, 2001, pp. 97-105.

[18] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G. Robinson, "Binary
translation," in Communications of the ACM, vol. 36, pp. 69-81, February 1993.

[19] B. Case, "‘Intel Reveals Pentium Implementation Details," in Microprocessor Report,
vol. 5, pp. 9–17, 1993.

[20] Apple, "Universal Binary Programming Guidelines, Second Edition," 2009.

[21] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber, and J.
Mattson, "The Transmeta Code Morphing™ Software: using speculation, recovery,
and adaptive retranslation to address real-life challenges," in Proceedings of the
international symposium on Code generation and optimization: feedback-directed and
runtime optimization, ed: IEEE Computer Society Washington, DC, USA, 2003, pp.
15-24.

[22] J. M. P. Cardoso, J. Bispo, and A. K. Sanches, "The Role of Programming Models on
Reconfigurable Computing Fabrics," in Chapter XII in the book: Behavioral Modeling
for Embedded Systems and Technologies: Applications for Design and
Implementation, L. Gomes and J. M. Fernandes, Eds., ed: IGI Global, 2009.

[23] J. Bispo and J. M. P. Cardoso, "On Identifying Segments of Traces for Dynamic
Compilation," in Proc. Intl. Conf. on Field Programmable Logic and Appl. (FPL'10),
Milano, Italy, 2010, pp. 263-266.

[24] J. Bispo and J. M. P. Cardoso, "Using the Megablock to Partition Programs for
Embedded Systems at Runtime," in INForum 2010 - II Simpósio de Informática, Univ.
do Minho, Braga, Portugal, 2010, pp. 699-710.

143

[25] J. Bispo and J. M. P. Cardoso, "On Identifying and Optimizing Instruction Sequences
for Dynamic Compilation," in Proc. Intl. Conf. on Field-Programmable Tech.,
Beijing, China, 2010, pp. 437-440.

[26] J. Bispo and J. M. P. Cardoso, "Techniques for Dynamically Mapping Computations
to Coprocessors," in Intl. Conf. on ReConFigurable Comp. and FPGAs
(ReConFig’2011), Cancun, Mexico, 2011, pp. 505-508.

[27] J. Bispo, N. Paulino, J. M. P. Cardoso, and J. C. Ferreira, "From Instruction Traces to
Specialized Reconfigurable Arrays," in Intl. Conf. on ReConFigurable Comp. and
FPGAs (ReConFig’2011), Cancun, Mexico, 2011, pp. 386-391.

[28] J. Bispo, N. Paulino, J. C. Ferreira, and J. M. P. Cardoso, "Transparent Trace-Based
Binary Acceleration for Reconfigurable HW/SW Systems," in IEEE Transactions on
Industrial Informatics, 2012 (under review).

[29] J. Hennessy, D. Patterson, D. Goldberg, and K. Asanovic, Computer architecture: a
quantitative approach: Morgan Kaufmann, 2003.

[30] F. E. Allen, "Control flow analysis," in SIGPLAN Not., vol. 5, pp. 1-19, 1970.

[31] J. Von Neumann, "First Draft of a Report on the EDVAC," in Annals of the History of
Computing, IEEE, vol. 15, pp. 27-75, 1993.

[32] M. Gokhale and P. S. Graham, Reconfigurable computing: Accelerating computation
with field-programmable gate arrays: Springer Verlag, 2005.

[33] J. Becker, R. Hartenstein, M. Herz, and U. Nageldinger, "Parallelization in co-
compilation for configurable accelerators-a host/accelerator partitioning compilation
method," in Proceedings of the Asia and South Pacific-Design Automation Conference
(ASP-DAC'98), 1998, pp. 23-33.

[34] I. Kuon and J. Rose, "Measuring the gap between FPGAs and ASICs," in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
26(2), pp. 203-215, 2007.

[35] R. Tessier and W. Burleson, "Reconfigurable computing for digital signal processing:
A survey," in The Journal of VLSI Signal Processing, vol. 28, pp. 7-27, 2001.

[36] J. M. P. Cardoso and P. C. Diniz, Compilation Techniques for Reconfigurable
Architectures: Springer Verlag, 2008.

[37] R. Hartenstein, "A decade of reconfigurable computing: a visionary retrospective," in
Proceedings of the conference on Design, automation and test in Europe, ed: IEEE
Press Piscataway, NJ, USA, 2001, pp. 642-649.

[38] J. M. P. Cardoso and M. P. Vestístias, "Architectures and compilers to support
reconfigurable computing," in Crossroads, vol. 5, pp. 15-22, 1999.

144

[39] I. Kuon and J. Rose, "Measuring the gap between FPGAs and ASICs," in Proceedings
of the 2006 ACM/SIGDA 14th international symposium on Field programmable gate
arrays, ed: ACM New York, NY, USA, 2006, pp. 21-30.

[40] D. L. Perry, VHDL: McGraw-Hill, 1993.

[41] D. Thomas and P. Moorby, The Verilog hardware description language: Springer
Verlag, 2008.

[42] I. Xilinx, "Xilinx ISE Design Suite 12.2," ed, 1995-2010.

[43] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron
FPGAs. Hingham, Mass: Kluwer Academic, 1999.

[44] G. De Micheli, Synthesis and optimization of digital circuits: McGraw-Hill Higher
Education, 1994.

[45] Enclustra. (last update in 2008). Wiki FPGA - Virtex-5 LX. Available:
http://www.wikifpga.com/index.php?title=Virtex-5_LX

[46] C. Brunelli, F. Garzia, D. Rossi, and J. Nurmi, "A coarse-grain reconfigurable
architecture for multimedia applications supporting subword and floating-point
calculations," in Journal of Systems Architecture, vol. 56, pp. 38-47.

[47] S. Shukla, N. W. Bergmann, and J. Becker, "QUKU: A Two-Level Reconfigurable
Architecture," in Proceedings of the IEEE Computer Society Annual Symposium on
Emerging VLSI Technologies and Architectures, 2006, pp. 109-116.

[48] J. Teifel and R. Manohar, "Highly pipelined asynchronous FPGAs," in Proceedings of
the 2004 ACM/SIGDA 12th international symposium on Field programmable gate
arrays, ed: ACM New York, NY, USA, 2004, pp. 133-142.

[49] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques
and Tools: Pearson, 2006.

[50] S. S. Muchnick, Advanced compiler design and implementation: Morgan Kaufmann,
1997.

[51] T. Software. TIOBE Programming Community Index. Available:
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

[52] G. De Micheli, R. Ernst, and W. H. Wolf, Readings in hardware/software co-design:
Morgan Kaufmann, 2002.

[53] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner, "An Architecture
Framework for Transparent Instruction Set Customization in Embedded Processors,"
in Proc. 32nd Ann. Intl. Symp. Computer Architecture (ISCA'05), 2005, pp. 272-283.

[54] T. Kistler, "Dynamic Runtime Optimization," in Proceedings of the Joint Modular
Languages Conference on Modular Programming Languages, ed: Springer-Verlag
London, UK, 1997, pp. 53-66.

145

[55] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang, and Y. Zemach,
"IA-32 execution layer: a two-phase dynamic translator designed to support IA-32
applications on Itanium/spl reg/-based systems," in 36th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-36), 2003, pp. 191-201.

[56] A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B. Yadavalli,
and J. Yates, "FX! 32: A profile-directed binary translator," in IEEE Micro, vol. 18,
pp. 56-64, 1998.

[57] F. Bellard, "QEMU, a Fast and Portable Dynamic Translator," in Proceedings of the
USENIX Annual Technical Conference, FREENIX Track, 2005, pp. 41-46.

[58] J. K. Paek, K. Choi, and J. Lee, "Binary acceleration using coarse-grained
reconfigurable architecture," in ACM SIGARCH Computer Architecture News, vol. 38,
pp. 33-39, 2011.

[59] E. Mirsky and A. DeHon, "MATRIX: a reconfigurable computing architecture with
configurable instruction distribution and deployable resources," in IEEE Symposium
on FPGAs for Custom Computing Machines 1996, pp. 157-166.

[60] E. Waingold, M. Taylor, V. Sarkar, W. Lee, Victor Lee, J. Kim, M. Frank, P. Finch, S.
Devabhaktuni, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, "Baring it all to
software: Raw machines," in Computer, vol. 30, pp. 86-93, 1997.

[61] B. Mei, S. Vernalde, D. Verkest, H. De Man, and R. Lauwereins, "ADRES: An
Architecture with Tightly Coupled VLIW Processor and Coarse-Grained
Reconfigurable Matrix," in Field-Programmable Logic and Applications, ed, 2003,
pp. 61-70.

[62] T. Miyamori and K. Olukotun, "A Quantitative Analysis of Reconfigurable
Coprocessors for Multimedia Applications," in IEEE Symposium on FPGAs for
Custom Computing Machines, pp. 2-11, 1998.

[63] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C. Filho,
"MorphoSys: an integrated reconfigurable system for data-parallel and computation-
intensive applications," in IEEE Transactions on Computers, vol. 49, pp. 465-481,
2000.

[64] J. R. Hauser and J. Wawrzynek, "Garp: a MIPS processor with a reconfigurable
coprocessor," in The 5th Annual IEEE Symposium on FPGAs for Custom Computing
Machines, 1997, pp. 12-21.

[65] Z. A. Ye, A. Moshovos, S. Hauck', and P. Banerjee, "CHIMAERA: a high-
performance architecture with a tightly-coupled reconfigurable functional unit," in
Proceedings of the 27th International Symposium on Computer Architecture, 2000,
pp. 225-235.

[66] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R. Taylor,
"PipeRench: a reconfigurable architecture and compiler," in Computer, vol. 33, pp.
70-77, 2000.

146

[67] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M. Weinhardt, "PACT
XPP—A Self-Reconfigurable Data Processing Architecture," in J. Supercomput., vol.
26, pp. 167-184, 2003.

[68] C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and S. G. Berg, "Mapping
applications to the RaPiD configurable architecture," in The 5th Annual IEEE
Symposium on FPGAs for Custom Computing Machines, 1997, pp. 106-115.

[69] C. Lattner and V. Adve, "LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation," in International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization, Palo Alto, California,
2004, pp. 75-88.

[70] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall, R. Jain, and H. Ziegler,
"DEFACTO: A design environment for adaptive computing technology," in Parallel
and Distributed Processing, pp. 570-578, 1999.

[71] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaydadjiev, Y. Lu, and S. Vassiliadis,
"DWARV: DelftWorkbench Automated Reconfigurable VHDL Generator," in 17th
International Conference on Field Programmable Logic and Applications (FPL),
2007, pp. 697-701.

[72] V. Bala, E. Duesterwald, and S. Banerjia, "Dynamo: a transparent dynamic
optimization system," in Proceedings of the ACM SIGPLAN 2000 conference on
Programming Language Design and Implementation, Vancouver, British Columbia,
Canada, 2000, pp. 1-12.

[73] W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, and G. E. Haab, "The
superblock: an effective technique for VLIW and superscalar compilation," in The
Journal of Supercomputing, vol. 7, pp. 229-248, 1993.

[74] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan,
G. Hoare, B. Zbarsky, and J. Orendorff, "Trace-based just-in-time type specialization
for dynamic languages," 2009, pp. 465-478.

[75] N. Clark, H. Zhong, and S. Mahlke, "Processor acceleration through automated
instruction set customization," in 36th International Symposium on Microarchitecture,
2003, pp. 129-140.

[76] R. Lysecky and F. Vahid, "Design and implementation of a MicroBlaze-based warp
processor," in ACM Transactions on Embedded Computing Systems, vol. 8, pp. 1-22,
2009.

[77] S. Singh, J. Rose, P. Chow, and D. Lewis, "The effect of logic block architecture on
FPGA performance," in IEEE Journal of Solid-State Circuits, vol. 27, pp. 281-287,
March 1992.

[78] P. Chow, S. O. Seo, J. Rose, K. Chung, G. Páez-Monzón, and I. Rahardja, "The design
of an SRAM-based field-programmable gate array, part I: Architecture," in IEEE

147

Transactions on Very Large Scale Integration (VLSI) Systems (TVLSI), vol. 7, pp.
191-197, 1999.

[79] A. Marquardt, V. Betz, and J. Rose, "Speed and area tradeoffs in cluster-based FPGA
architectures," in IEEE Trans. Very Large Scale Integr. Syst., vol. 8, pp. 84-93, 2000.

[80] G. Stitt, R. Lysecky, and F. Vahid, "Dynamic hardware/software partitioning: a first
approach," in Proceedings of the 40th conference on Design automation, ed: ACM
New York, NY, USA, 2003, pp. 250-255.

[81] R. Lysecky and F. Vahid, "On-Chip logic minimization," in Proceedings of the Design
Automation Conference (DAC), 2003, pp. 334-337.

[82] R. Lysecky, F. Vahid, and S. Tan, "Dynamic FPGA routing for just-in-time FPGA
compilation," in Proceedings of the Design Automation Conference (DAC), 2004, pp.
954-959.

[83] R. Lysecky, F. Vahid, and S. Tan, "A study of the scalability of on-chip routing for
just-in-time FPGA compilation," in Proceeding of the Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2005, pp. 57-62.

[84] V. Betz and J. Rose, "VPR: A new packaging, placement, and routing for FPGA
research," in Proceeding of the Internation Workshop on Field Programmable Logic
and Applications (FPLA), 1997, pp. 213-222.

[85] D. Brelaz, "New methods to color the vertices of a graph," in Communications of
ACM, vol. 22, pp. 251-256, 1979.

[86] G. Memik, W. H. Mangione-Smith, and W. Hu, "Netbench: A benchmarking suite for
network processors," in Proceedings of the 2001 IEEE/ACM international conference
on Computer-aided design, ed: IEEE Press Piscataway, NJ, USA, 2001, pp. 39-42.

[87] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, "MediaBench: a tool for
evaluating and synthesizing multimedia and communicatons systems," in Proceedings
of the 30th annual ACM/IEEE international symposium on Microarchitecture, ed:
IEEE Computer Society, 1997, pp. 330-335.

[88] EEMBC. (2005). The Embedded Microprocessor Benchmark Consortium. Available:
http://www.eembc.org

[89] A. Malik, B. Moyer, and D. Cermak, "A low power unified cache architecture
providing power and performance flexibility (poster session)," in Proceedings of the
2000 international symposium on Low power electronics and design, ed: ACM New
York, NY, USA, 2000, pp. 241-243.

[90] I. Xilinx, "Microblaze Processor Reference Guide v13.4," in reference manual, 2011.

[91] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner, "Application-Specific
Processing on a General-Purpose Core via Transparent Instruction Set Customization,"
in Proc. 37th Ann. IEEE/ACM Intl. Symp. Microarch., Portland, USA, 2004, pp. 30-
40.

148

[92] P. Yu and T. Mitra, "Characterizing Embedded Applications for Instruction-Set
Extensible Processors," in DAC '04: Proceedings of the 41st annual conference on
Design automation, 2004, pp. 723-728.

[93] F. Spadini, M. Fertig, and S. J. Patel, "Characterization of repeating dynamic code
fragments," Technical Report CHRC-02-09, University of Illinois at Urbana-
Champaign2002.

[94] K. Atasu, L. Pozzi, and P. Ienne, "Automatic application-specific instruction-set
extensions under microarchitectural constraints," in Proceedings of the 40th Design
Automation Conference, 2003, pp. 256-261.

[95] S. J. Patel and S. S. Lumetta, "rePLay: A hardware framework for dynamic
optimization," in IEEE Transactions on Computers, vol. 50, pp. 590-608, June 2001.

[96] J. L. Henning, "SPEC CPU2000: Measuring CPU performance in the new
millennium," in Computer, vol. 33, pp. 28-35, 2000.

[97] A. C. Beck, M. B. Rutzig, G. Gaydadjiev, and L. Carro, "Run-Time Adaptable
Architectures for Heterogeneous Behavior Embedded Systems," in Proc. 4th Intl.
Works. Reconf. Comput.: Architectures, Tools and Applications, 2008, pp. 111-124.

[98] J. Burns and J. L. Gaudiot, "SMT layout overhead and scalability," in IEEE
Transactions on Parallel and Distributed Systems, pp. 142-155, 2002.

[99] J. E. Smith, "A study of branch prediction strategies," in 8th International Symposium
on Computer Architecture 1981, pp. 135-148.

[100] E. Z. Bem and L. Petelczyc, "MiniMIPS: a simulation project for the computer
architecture laboratory," in SIGCSE ’03, NY, USA, 2003, pp. 64-68.

[101] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
"MiBench: A free, commercially representative embedded benchmark suite," in IEEE
International Workshop on Workload Characterization WWC-4, ed, 2001, pp. 3-14.

[102] V. Allan, R. Jones, R. Lee, and S. Allan, "Software pipelining," in ACM Computing
Surveys (CSUR), vol. 27, pp. 367-432, 1995.

[103] B. R. Rau, "Iterative modulo scheduling: An algorithm for software pipelining loops,"
1994, pp. 63-74.

[104] Y. Ben-Asher and N. Rotem, "Synthesis for Variable Pipelined Function Units," in
International Symposium on System-on-Chip (SOC), Tampere, Finland, 2008, pp. 1-4.

[105] G. M. Amdahl, "Validity of the single processor approach to achieving large scale
computing capabilities," in Spring Joint Computer Conference, 1967, pp. 483-485.

[106] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, "Effective
compiler support for predicated execution using the hyperblock," in Proc. 25th Ann.
Intl. Symp. on Microarch., ed: IEEE Computer Society Press, 1992, pp. 45-54.

149

[107] J. V. Leeuwen, Handbook of Theoretical Computer Science: Algorithms and
Complexity: MIT Press 1990.

[108] M. G. Main and R. J. Lorentz, "An O(n log n) algorithm for finding all repetitions in a
string," in Journal of Algorithms, vol. 5, pp. 422-432, 1984.

[109] D. Gusfield and J. Stoye, "Linear time algorithms for finding and representing all the
tandem repeats in a string," in Journal of Computer and System Sciences, vol. 69, pp.
525-546, 2004.

[110] J. Bispo, Y. Sourdis, J. M. P. Cardoso, and S. Vassiliadis, "Regular Expression
Matching for Reconfigurable Packet Inspection," in IEEE International Conference on
Field Programmable Technology (FPT’06), Bangkok, Thailand, 2006, pp. 119-126.

[111] J. Bispo and J. M. P. Cardoso, "Synthesis of Regular Expressions for FPGAs," in
International Journal of Electronics (IJE), vol. 95, pp. 685-704, Taylor & Francis,
January 2008.

[112] P. Hsieh. (2008). Hash functions. Available:
http://www.azillionmonkeys.com/qed/hash.html

[113] W. Sheng, W. He, J. Jiang, and Z. Mao, "Full Automatic Task Compilation Flow from
C to REmus Coarse Grain Reconfigurable Media Processor," in JCIT: Journal of
Convergence Information Technology, vol. 6, pp. 193-202, 2011.

[114] G. Kuzmanov, G. Gaydadjiev, and S. Vassiliadis, "The MOLEN processor prototype,"
in 12th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2004, pp. 296-299.

[115] D. D. Gajski, Principles of Digital Design: Prentice Hall, 1996.

[116] ISO, "ISO/IEC 9899:TC2 Committee Draft," ed, 2005.

[117] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, "Chapter 9
Sequencing and scheduling: Algorithms and complexity," in Handbooks in Operations
Research and Management Science. vol. Volume 4, A. H. G. R. K. S.C Graves and P.
H. Zipkin, Eds., ed: Elsevier, 1993, pp. 445-522.

[118] H.-P. Rosinger, "Connecting Customized IP to the MicroBlaze Soft Processor Using
the Fast Simplex Link (FSL) Channel," XAPP529 (v1.3), Xilinx2004.

[119] J. Bispo. (2011). Megablock Tool Suite. Available: http://suikasoft.com/specs/

[120] I. Xilinx, "Microblaze Software Reference Guide v2.2," in reference manual, 2002.

[121] B. H. Fletcher, "FPGA Embedded Processors - Revealing True System Performance "
Memec, Embedded Training Program - Embedded Systems Conference (San
Francisco), 2005.

[122] P. Alfke, "Xilinx Spartan-6 FPGA User Guide Lite," ed. EE Times - Design: UBM
Electronics, 2009.

150

[123] E. A. Lee, "Programmable DSP Architectures: Part I," in ASSP Magazine, IEEE, vol.
5, pp. 4-19, 1988.

[124] F. Vahid, G. Stitt, and R. Lysecky, "Warp processing: Dynamic translation of binaries
to FPGA circuits," in Computer, vol. 41, pp. 40-46, 2008.

[125] A. Nair and R. Lysecky, "Non-intrusive dynamic application profiler for detailed loop
execution characterization," in International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, 2008, pp. 23-30.

[126] N. Paulino, "Generation of Reconfigurable Circuits from Machine Code," Master
Thesis, Engineering Faculty, FEUP, Porto, Portugal, 2011.

[127] V. Zivojnovic, J. M. Velarde, C. Schlager, and H. Meyr, "DSPstone: A DSP-oriented
benchmarking methodology," in Proc. of the Intern. Conf. on Signal Processing and
Technology, 1994, pp. 715-720.

[128] Honeywell. (2012). Available: http://honeywell.com/Pages/Home.aspx

[129] E. Burnette, Hello, Android: introducing Google's mobile development platform:
Pragmatic Bookshelf, 2009.

[130] A. Diwan, K. S. McKinley, and J. E. B. Moss, "Type-based alias analysis," in
Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation Montreal, Quebec, Canada, 1998, pp. 106-117.

[131] D. W. Wall, "Limits of instruction-level parallelism," in Fourth International
Conference on Architectural Support for Programming Languages and Operatings
Systems, 1991, pp. 176-188.

[132] Digilent, "Atlys Board Reference Manual," 2011.

151

Appendix A – SRA Implementation

In the context of this thesis and of an MSc thesis concluded at FEUP (Faculty of

Engineering of the University of Porto), it was developed a prototype system for dynamic

partitioning based on an FPGA board [27, 126]. The system implements some of the ideas

presented in this thesis and can automatically move, at runtime, loops from a MicroBlaze

executable binary to a Reconfigurable Processing Unit (RPU). We use Megablocks as the

partitioning unit. The Megablock detection is done offline, through cycle-accurate simulation

of applications during a profile phase. The detected Megablocks are transformed into the IR,

which is used to create an RPU tailored to the detected Megablocks. The RPU is an

implementation of the SRA architecture (see Section 5.5.3), is runtime reconfigurable and can

use several configurations during a single program execution. The implementation uses Single

Address Identification (SAI – see Section 5.4) to identify the Megablocks detected during the

profiling phase. In our current implementation, Detection and Translation (i.e., generation of

the RPU) is done offline, while Identification and Replacement is done online, without

changes in the executable binary.

Figure A.1 shows the general architecture of the embedded system prototype, which

consists of a GPP (a Xilinx MicroBlaze soft-core in this case) and a loosely coupled RPU,

both connected to the system bus (in this case, a Processor Local Bus – PLB). To avoid

modifications to the GPP, we use an Injector module which monitors the instructions

executed by the GPP and communicates with the Reconfiguration Module (RM) to trigger the

use of the RPU. The RM is responsible for the RPU reconfiguration. The program code

executed by the GPP is in external memory (DDR2). The prototype was designed for an

FPGA environment: instead of proposing a single all-purpose RPU, we developed a tool chain

which generates the HDL description of an RPU tailored for the application to be run on the

system. This step is done automatically.

The target architecture was implemented on a Xilinx Spartan-6 LX45 FPGA [122] and a

Digilent Atlys board [132] was used to run the examples.

152

Figure A.1. System Architecture (source: [27]).

Figure A.2 presents the main components of the RPU, and Figure A.3 illustrates a possible

array of FUs of an RPU. The RPU uses a peripheral bus interface unit to feed operands and

retrieve results through memory mapped registers. The array of FUs contains all the blocks

necessary to execute the previously detected Megablocks. The array of FUs is organized in

rows with variable number of single-operation FUs. If an operation has a constant input, the

RPU generation process tailors the FU to that input (e.g., bra FU in Figure A.3). The

implementation supports arithmetic and logic operations with integers, including carry

operations. Crossbar connections are used between adjacent rows, and are runtime

reconfigurable, allowing the use of multiple Megablocks during the execution of a program.

Connections spanning more than one row are established by pass-through FUs (pass FUs in

Figure A.3). RPU configuration is performed by writing to configuration registers. These

registers control the routing of the operands through the RPU and indicate which exit

conditions should be active.

Figure A.2. RPU Architecture (source: [27]).

The RPU was specifically designed to run loops with one path and multiple-exits, such as

Megablocks. The number of iterations of the loop does not need to be known before

execution: the RPU keeps track of the exits points (e.g., bne FU in Figure A.3) of the

Megablock and signals when an exit occurs (via a status register). When this happens the

CPU

Injector RM

Bus

Reconfigurable Processing Unit

DDR2

PLB Bus

PLB Slave interface

N x Inputs M x Routing L x OutputFeedback Status ContextMasks Start

Reconfigurable Processing Unit

Write only

Read only

R/WExit conditions Results

Array of
FUs

Iteration
Control

153

current iteration is discarded, and execution resumes in the GPP at the beginning of the

iteration. In the current version of the RPU, all operations complete within one clock cycle

and each iteration takes as many clock cycles as the number of rows (depth) of the RPU.

Figure A.3. Array of FUs (source: [27]).

Figure A.4 shows the architecture of the PLB Injector, responsible for interfacing the GPP

with the rest of the system, as well as for starting the reconfiguration process. Each RPU

configuration is associated to a single instruction address.

Figure A.4. PLB Injector Architecture (source: [27]).

The Injector monitors the instruction addresses placed on the bus by the GPP until it sees

the start of a Megablock. The Injector then stalls the execution of the GPP while

reconfiguration is occurring and communicates the Megablock ID to the RM. After

reconfiguring the RPU, the RM sends instructions to the Injector with in turn are fed to the

GPP. The instructions will cause the GPP to branch to a memory position containing a

add add bra

anl pass pass

sub bne

N Input registers

M Output registers

(N * Row0 inputs) swiches

(M * Row2 outputs) swiches

(Row0 Outputs * Row1 Inputs) switches

(Row1 Outputs * Row2 Inputs) switches

Exit condition(s)

Iteration co ntrol

Status

Sw
itch13 Constant

value
operator

R
ow

 0
R

ow
 1

R
o

w
 2

Megablock
Addresses

CPU PCOpcode

FSL
To RM

FSL
From RM

M
e gablock

ID

Select

Master
Switch

Branch
to PC + 0

PLB Passthrough

To PLB
Bus

From PLB
Bus

PLB Passthrough

154

previously prepared Communication Routine (CR). By executing it, the GPP copies the

contents from its register file to the appropriate input registers of the RPU. When the RPU

execution ends, the GPP completes the CR by retrieving the values from the output registers

of the RPU and resumes execution of the program code. This way, we can change the

execution flow of the GPP without overwriting the original instructions of the program, nor

interfering with the original software tool chain.

We developed a tool suite to extract the Megablocks, map them to the RPU, and generate

the configuration bits. The input of the tool is the executable file (i.e., the ELF file). The tool

suite uses a cycle-accurate simulator of the MicroBlaze to monitor execution traces. The

detected Megablocks are then processed by two tools: one generates Verilog descriptions for

the RPU and the Injector, and the other generates the CRs for the GPP. The Verilog

generation tool parses Megablock information, determines FU sharing across graphs, assigns

FUs to rows, adds pass-through units, and generates files containing the placement of FUs.

FUs are shared between different Megablocks, since at any given time there is only one

Megablock executing in the RPU. The tool also generates routing information to be used at

runtime (configuration of the inter-row switches), as well as the data required for Megablock

Identification. The generated RPU is tailored to a specific set of Megablocks; switching

between members of this set is accomplished by configuring the inter-row switches. Input

values in the GPP’s register file, needed at runtime for Megablock execution, are transmitted

to the RPU by executing the CRs on the GPP.

Figure A.5 presents speedups for two scenarios. In the first one, referred as DDR case,

results are obtained from execution on the FPGA and running the kernels from DDR memory.

The execution times were measured using timers. The second set of results (BRAM case) was

obtained by estimation, considering that the programs are stored in internal memory

(BRAMs). Results include all communication overheads. We present values for a set of 6

benchmarks, a weighted average of the set and a synthetic benchmark which combines the 6

benchmarks (merge-all).

In the DDR scenario, the MicroBlaze has a 23 cycle penalty for each instruction it

executes. Most of the achieved speedup comes from avoiding execution of instructions in the

GPP and executing operations on the RPU instead. However, for each call to the RPU, the

GPP executes a CR which passes the values to the RPU through the bus. Since the CRs are in

DDR, they also incur that penalty. The DDR access latency is the main contributor to the very

155

high overhead of this scenario (approximately 92% of the total execution time, on most

cases).

Figure A.5. Speedups for DDR and BRAM scenario (source [27]).

The situation is aggravated by the relatively low number of instructions moved by

Megablock call (around 200 instructions executed per loop, in most cases). The overhead

includes the identification of the Megablock, configuration of the RPU and execution of the

CR. Since the RM fetches instructions from local memories, a large part of the overhead

comes from executing the CRs in the GPP afterwards. The speedups measured for the DDR

scenario include all overheads and range from 3.9× to 18.2×.

The BRAM scenario is the best possible case for the MicroBlaze processor regarding

performance. When considering the BRAM scenario, the speedups and the overheads are

significantly reduced, as there is no longer a high penalty for fetching instructions from

memory (and as a consequence, the MicroBlaze executes the program faster). We used a

cycle-accurate MicroBlaze simulator to calculate the execution time on the GPP. We

considered the same overheads of the DDR scenario. We estimated the execution time for

CRs considering an average of 1.18 cycles per executed instruction, and added a PLB latency

of 9 cycles to write/read operands/results to/from the RPU. RPU execution cycles were

calculated by multiplying the RPU’s depth and the number of iterations. We estimate

speedups between 1.03× and 2.01× (including all overheads).

In both scenarios the speedup of the synthetic benchmark merge-all is lower than the

speedup of the weighted average. This is mostly due to the overhead of RPU reconfiguration,

which only happens in the merge-all case.

Table A.1 characterizes the FPGA implementation of the RPUs. The maximum clock

frequencies of the RPUs for individual benchmarks ranged from 85 to 139MHz, which is

3,9 4,2 4,3

5,2

4,5

7,9

6,4

1,3
1,0

2,0

1,1
1,5

1,2
1,6 1,4

0

1

2

3

4

5

6

7

8

9

10

S
p
e
e
d
u
p

DDR

BRAM (Estimation)

18,2

156

above the clock frequency of the MicroBlaze. Individual RPUs do not use more than 9%

(2369) of the LUTs and 2% (1170) of the FFs. The merge-all RPU uses about 55% of the

LUTs and 27% of the FFs that would be needed if the RPU was generated with no sharing of

FUs.

Kernels
FPGA Implementation

LUTs FFs
Max.

Freq.(MHz)
count 1433 926 99.30
even_ones 2331 1153 132.83
fibonacci 2369 1170 121.56
hamming 1739 1086 138.08
pop_cnt 1758 1058 137.97
reverse 1780 1072 139.06
merge-all 6325 1719 85.19

Table A.1. RPU FPGA Implementation

157

Appendix B – Additional Results

In Chapter 6 we presented several figures with results which were calculated using

the arithmetic mean. In this Appendix we present another version of the same figures,

which use the geometric mean to calculate the average values.

B-1 Baseline Geometric Means

a) b)

Figure B.1. Average a) speedup and b) IPC in the baseline case when varying the maximum

number of load/store units (geometric mean).

a) b)

Figure B.2. Average a) speedup and b) IPC in the baseline when varying the maximum number

of arithmetic/logic units (geometric mean).

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 ∞

S
p
e
e
d
u
p

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 ∞

IP
C

Max. load/store units per line

no-ifs no-ifs unrolled ifs ifs-unrolled

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

S
p
e
e
d
u
p

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

IP
C

Max. arithmetic/logic units per line

no-ifs no-ifs unrolled ifs ifs-unrolled

158

Figure B.3. Average speedup in the baseline case when varying the ration between the RPU and

GPP clock (geometric mean).

B-2 If -Conversion Geometric Means

a) b)

Figure B.4. Average a) speedup and b) IPC for adapted code when varying the maximum

number of load/store units (geometric mean).

a) b)

Figure B.5. Average a) speedup and b) IPC for adapted code when varying the maximum

number of arithmetic/logic units (geometric mean).

0

0.5

1

1.5

2

2.5

3

3.5

4

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
p
e
e
d
u
p

RPU/GPP clock ratio

no-ifs no-ifs unrolled ifs ifs-unrolled

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 ∞

S
p
e
e
d
u
p

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 ∞

IP
C

Max. load/store units per line

ifs (adapted) ifs-unrolled (adapted) ifs ifs-unrolled

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

S
p
e
e
d
u
p

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

IP
C

Max. arithmetic/logic units per line

ifs (adapted) ifs-unrolled (adapted) ifs ifs-unrolled

159

Figure B.6. Average speedup for adapted code when varying the ration between the RPU and

GPP clock (geometric mean).

B-3 Pipelining (Sequential Schedule) Geometric Means

a) b)

Figure B.7. Average a) speedup and b) IPC for adapted code when varying the maximum

number of load/store units (geometric mean).

a) b)

Figure B.8. Average a) speedup and b) IPC for adapted code when varying the maximum

number of arithmetic/logic units (geometric mean).

0

0.5

1

1.5

2

2.5

3

3.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
p
e
e
d
u
p

RPU/GPP clock ratio

ifs (adapted) ifs-unrolled (adapted) ifs ifs-unrolled

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 ∞

S
p
e
e
d
u
p

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 ∞

IP
C

Max. load/store units per line

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

S
p
e
e
d
u
p

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

IP
C

Max. arithmetic/logic units per line

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)

160

Figure B.9. Average speedup for adapted code when varying the ration between the RPU and

GPP clock (geometric mean).

B-4 Pipelining (Overlapping Schedule) Geometric Means

a) b)

Figure B.10. Average a) speedup and b) IPC for adapted code when varying the maximum

number of load/store units (geometric mean).

a) b)

Figure B.11. Average a) speedup and b) IPC for adapted code when varying the maximum

number of arithmetic/logic units (geometric mean).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
p
e
e
d
u
p

RPU/GPP clock ratio

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 ∞

S
p
e
e
d
u
p

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 ∞

IP
C

Max. load/store units per line

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

S
p
e
e
d
u
p

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 16 32 64 ∞

IP
C

Max. arithmetic/logic units per line

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)

161

Figure B.12. Average speedup for adapted code when varying the ration between the RPU and

GPP clock (geometric mean).

0

1

2

3

4

5

6

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
p
e
e
d
u
p

RPU/GPP clock ratio

no-ifs no-ifs unrolled ifs (adapted) ifs-unrolled (adapted)

163

Appendix C – Tools

We developed a number of software tools to evaluate and validate the techniques proposed

in this thesis. The tools are available online [119]. We include below screenshots of the most

relevant software tools developed in the context of this thesis: Megablock Extraction (see

Figure B.9), Megablock Estimation (see Figure B.9), VHDL for Megablocks (see Figure B.9)

and VHDL for Megablock Detector (see Figure C.4).

a) b)

Figure C.1. Options for program Megablock Extractor.

164

a)

b)

Figure C.2. Options for program Megablock Estimation.

165

Figure C.3. Options for program VHDL for Megablocks.

Figure C.4. Options for program VHDL for Megablock Detector.

167

About the Author
João Bispo received his 5-year Engineer degree in

Computer Systems and Informatics from University of

Algarve in July 2006.

Prior to graduation, he spent 5 months at the

Computer Engineering division of Delft University of

Technology as Guest Investigator. Before applying to a

doctorate scholarship, he was involved in a bilateral

cooperation project and in the context of that project

visited the University of Karlsruhe, and spent a year as a

researcher at INESC-ID, in Lisbon.

He is a member of the SPeCS research group at FEUP, Porto, and during 2011 was a

regular visitor of the lab.

His research interests include Reconfigurable Computing, Architecture Design

Exploration, Automatic Generation of Hardware for Specific Applications and Java Platform

Programming.

List of Publications Related to this Thesis:

• J. Bispo and J. M. P. Cardoso, "Hardware Pipelining of Runtime-Detected Loops," in 25th Symposium on

Integrated Circuits and Systems Design, Brasília, Brazil, 2012.

• J. Bispo, N. Paulino, J. C. Ferreira, and J. M. P. Cardoso, "Transparent Runtime Migration of Loop-Based

Traces of Processor Instructions to Reconfigurable Processing Units," Selected Papers from the 2011

International Conference on Reconfigurable Computing and FPGAs (ReconFig 2011), 2012 (under review).

• J. Bispo, N. Paulino, J. C. Ferreira, and J. M. P. Cardoso, "Transparent Trace-Based Binary Acceleration for

Reconfigurable HW/SW Systems," IEEE Transactions on Industrial Informatics, 2012 (under review).

• J. Bispo, N. Paulino, J. M. P. Cardoso, and J. C. Ferreira, "From Instruction Traces to Specialized

Reconfigurable Arrays," in Intl. Conf. on ReConFigurable Comp. and FPGAs (ReConFig’2011), Cancun,

Mexico, 2011, pp. 386-391.

• J. Bispo and J. M. P. Cardoso, "Techniques for Dynamically Mapping Computations to Coprocessors," in

Intl. Conf. on ReConFigurable Comp. and FPGAs (ReConFig’2011), Cancun, Mexico, 2011, pp. 505-508.

• João Bispo and João M. P. Cardoso, "On Identifying and Optimizing Instruction Sequences for Dynamic

Compilation," in Int’l Conference on Field-Programmable Technology (FPT'10), Tsinghua University,

Beijing, China: 2010, pp. 437-440.

168

• João Bispo and João M. P. Cardoso, "Using the Megablock to Partition Programs for Embedded Systems at

Runtime," in INForum - Simpósio de Informática, Univ. do Minho, Braga, Portugal, 2010.

• João Bispo and João M. P. Cardoso, "On Identifying Segments of Traces for Dynamic Compilation," in Int’l

Conference on Field Programmable Logic and Applications (FPL), Milano, Italy, 2010, pp. 263-266.

• João M. P. Cardoso, João Bispo, and Adriano K. Sanches, "The Role of Programming Models on

Reconfigurable Computing Fabrics," in Chapter XII in the book: Behavioral Modeling for Embedded

Systems and Technologies: Applications for Design and Implementation, L. Gomes and J. M. Fernandes,

Eds.: IGI Global, 2009.

Publications Unrelated to this Thesis:

• João Bispo and Ana Paiva, "A model for emotional contagion based on the emotional contagion scale,"

in 3rd Int’l Conference on Affective Computing and Intelligent Interaction (ACII), Amsterdam, Netherlands,

2009, pp. 1-6.

• Yiannis Sourdis, João Bispo, João M. P. Cardoso, and Stamatis Vassiliadis, "Regular Expression Matching

in Reconfigurable Hardware," The Journal of VLSI Signal Processing Systems, vol. 51, pp. 99-121,

Springer, April 2008.

• Carlos Morra, João M. P. Cardoso, João Bispo, and Juergen Becker, "Retargeting, Evaluating, and

Generating Reconfigurable Array-Based Architectures," in 6th IEEE Symposium on Application Specific

Processors (SASP 2008), Anaheim CA, USA, 2008, pp. 34–41.

• Carlos Morra, João Bispo, João M. P. Cardoso, and Juergen Becker, "Combining Rewriting-Logic,

Architecture Generation, and Simulation to Exploit Coarse-Grained Reconfigurable Architectures," in The

Sixteenth Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’08),

Stanford, Palo Alto, CA, USA, 2008, pp. 320-321.

• João Bispo and João M. P. Cardoso, "Synthesis of Regular Expressions for FPGAs," International Journal

of Electronics (IJE), vol. 95, pp. 685-704, Taylor & Francis, January 2008.

• João Bispo and João M. P. Cardoso, "A Preliminary Idea for Adapting Programs to Parallel Environments,"

in Proceedings of ACACES 2008 Poster Abstracts: Advanced Computer Architecture and Compilation for

Embedded Systems, L'Áquila, Italy, 2008, pp. 231-234.

• João Bispo, Yiannis Sourdis, João M. P. Cardoso, and Stamatis Vassiliadis, "Synthesis of Regular

Expressions Targeting FPGAs: Current Status and Open Issues," in Int’l Workshop on Applied

Reconfigurable Computing (ARC’07), Mangaratiba, Rio de Janeiro, Brazil, 2007, pp. 179-190.

• João Bispo, Yiannis Sourdis, João M. P. Cardoso, and Stamatis Vassiliadis, "Regular Expression Matching

for Reconfigurable Packet Inspection," in IEEE Int’l Conference on Field Programmable Technology

(FPT’06), Bangkok, Thailand, 2006, pp. 119-126.

169

Index
2D CGRA, xiii, xvi, xvii, 72, 73, 74, 75,

76, 89, 90, 103
Apple, 3, 148
basic block, xxvi, 8, 30, 31, 34, 36, 37, 38,

39, 43, 44, 61, 97, 99, 102, 134, 135
binary translation, 3, 5, 19, 20, 27, 33, 34,

39
BRAM, xviii, xxiii, 96, 158, 159
C code, xv, xvi, xviii, 2, 45, 46, 78, 79, 93,

133, 135
Catapult C, 2, 147
CCA, 27
CGRA, 13, 71, 76
compilation tools, 53, 54, 145
control-flow, 7, 45, 52, 93, 96, 138
coprocessor, vii, xv, 1, 2, 5, 7, 9, 10, 15,

16, 19, 37, 41, 42, 43, 57, 64, 71, 141,
142, 145, 150

Critical Path Length, xxiii, 103, 107
critical sections, 1, 143
Crusoe, 3, 19
custom hardware, 2, 21
DHSP, xxiv, 2, 4, 7, 16, 41, 141, See

dynamic partitioning
DIM, 33
dynamic compilation, 3, 15, 17, 19
dynamic partitioning, 5, 15, 19, 21, 70, 73,

102, 141
embedded systems, 1, 4, 5, 15, 17, 19, 22,

26, 27, 30, 33, 39, 142, 147
execution trace, 16, 21, 45, 48, 50, 68, 78,

145
FPGA, 13, 20, 22, 73
fragment, 21, 44, 45, 48, 97, 99
GPP, 7, 14
hardware accelerator, 41
Hardware/software co-design, 1
high-level synthesis, 2, 77
hotspots, 1, 9, 24
if-conversion, xvi, xvii, xxi, 4, 6, 52, 53,

55, 60, 93, 111, 112, 113, 114, 116, 117,
124, 133, 138, 142, 143, 144, 145

ILP, 20, 35, 107, 116, 144
IM, 81

inner loop unrolling, 4, 116, 133, 143
Instruction Set Architecture, 7
Intel, 3, 19, 148
intermediate representation, 4, 15, 19, 50,

55, 56, 58, 64, 96, 119, 138
Intermediate Representation, xii, 5, 41, 50,

57, 142, 144
IPC, 109, 114, 120
Java, 3, 10, 15, 19, 134, 137, 148, 171
JIT, 3, 15, 25
Linux, 3
LM, 81
Macintosh, 3
MacOs, 3
Megablock, 4, 45, 50
Megablock coverage, 6, 93, 101, 102
Megablock Identification, xiii, 57, 68, 158
Mentor Graphics, 2
MicroBlaze, xii, xv, xvi, 26, 27, 37, 46, 54,

55, 57, 58, 79, 93, 96, 112, 124, 125,
126, 133, 135, 137, 138, 142, 144, 151,
153, 155, 158, 159, 160

Microprocessor, 148, 152
MSI, 68, 97
Multi-core, 147
overhead, 3, 9, 12, 17, 23, 27, 31, 36, 37,

39, 42, 43, 52, 74, 75, 98, 99, 107, 125,
134, 152, 159

parallel computing, 5, 41, 44
partitioning unit, 4, 5, 155
pattern elements, xxv, xxvi, 47, 48, 49, 61,

62, 64
pattern unit, 48, 97, 102
pattern-matching, 4, 142
Pentium, 3, 20, 148
pipelining, v, vii, xvii, xviii, 4, 6, 19, 33,

35, 38, 57, 73, 76, 77, 80, 81, 84, 86, 89,
90, 91, 93, 109, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 139, 141, 142,
143, 145, 153

PLB, xviii, xxv, 155, 157, 159
PowerPC, 3
profile phase, 5, 57, 155
proof-of-concept, 6, 102, 122, 124

170

reconfigurable architecture, 20, 21, 24, 38,
149, 150

reconfigurable computing, 19, 20, 149, 150
Rosetta, 3
RPU, 11, 16, 70, 81
Runtime Reconfiguration, vii
SAI, xxi, xxvi, 57, 68, 69, 91, 97, 98, 99,

102, 110, 144, 155
SAr, 73, 103, 125
sequential code, vii, 4, 5, 41, 44
SM, 81
Source Code, xii, 52

source-to-source, 5, 41, 52, 56, 145
SRA, xiii, xiv, xvi, xxvi, 75, 76, 90, 103,

155
synthesis, 13, 23, 74, 77, 96, 129
systems-on-chip, 1
Transmeta, 148
Verilog, 1, 13, 147, 149, 158
VHDL, xix, 13, 96, 122, 124, 129, 142,

149, 151, 167, 169
Warp, 22, 74, 99, 133
Windows, 3
x86, 3, 19, 20

