]
=

UNIVERSIDADE TECNICA DE LISBOA

INSTITUTO SUPERIOR TECNICO

INSTITUTO
SUPERIOR
TECNICO

Mapping Runtime-Detected Loops from

Microprocessors to Reconfigurable Processing Units

Joao Carlos Viegas Martins Bispo

Supervisor. Doctor Jodo Manuel Paiva Cardoso

Co-Supervisor. Doctor José Carlos Monteiro

Thesis approved in public session to obtain the PhDegree in
Information Systems and Computer Engineering
Jury Final Classification
Pass with Merit

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:
Doctor JoA0 MIGUEL LOBO FERNANDES
Doctor JoAo MANUEL PAlvA CARDOSO
Doctor JoSeCARLOS ALVES PEREIRAMONTEIRO
Doctor CHRISTIAN PLESSL

Doctor NuNo FILIPE VALENTIM ROMA

2012

]
=

UNIVERSIDADE TECNICA DE LISBOA

INSTITUTO SUPERIOR TECNICO

INSTITUTO
SUPERIOR
TECNICO

Mapping Runtime-Detected Loops from

Microprocessors to Reconfigurable Processing Units

Joao Carlos Viegas Martins Bispo

Supervisor. Doctor Jodo Manuel Paiva Cardoso

Co-Supervisor. Doctor José Carlos Monteiro

Thesis approved in public session to obtain the PhDegree in
Information Systems and Computer Engineering
Jury Final Classification
Pass with Merit

Jury

Chairperson: Chairman of the IST Scientific Board

Members of the Committee:

Doctor JoAo MIGUEL LoBo FERNANDES Professor Catedratico da Escola de Engenharidnidersidade
do Minho;

Doctor JoAo MANUEL Paiva CARDOSO, Professor Associado da Faculdade de Engenhatimigarsidade
do Porto;

Doctor Jose CARLOS ALVES PEREIRA MONTEIRO, Professor Associado do Instituto Superior Tégné
Universidade Técnica de Lisboa;

Doctor CHRISTIAN PLESSL, Professor Auxiliar da Universidade de PaderbAtamanha;

Doctor NuNo FILIPE VALENTIM ROMA, Professor Auxiliar do Instituto Superior Técnida, Universidade
Técnica de Lisboa.

Funding Institutions

FCT — Fundacéo para a Ciéncia e a Tecnologia

2012

Resumo

Os sistemas computacionais baseados em processd@?€s) podem ser estendidos
com co-processadores, unidades de processamerdnfigecaveis — RPUs, de modo a
melhorar caracteristicas relacionadas com o des#gmp@x.: tempo de execucdo, consumo
de energia).

Técnicas tradicionais de particionamento hardwaffare permitem-nos atingir esse
objectivo. No entanto, € comum o0 processo ser rprogcessitar de conhecimentos
nao-triviais sobre projecto de hardware digitat, eesultado final ficar muito dependente de
aspectos especificos da arquitectura alvo, difiadib a portabilidade da solucdo para outros
sistemas, mesmo que fagam parte da mesma familiis pigsitivos.

Pretende-se com esta tese propor técnicas inovado permitam o particionamento
dindmico de aplicacbes, ao nivel da representag@ridn O meétodo aborda a migracao
automética de codigo em tempo de execucdo, do ggader para 0 co-processador. A
migracdo € baseada rdegablock um novo tipo deloop, criado tendo em mente as
caracteristicas do particionamento dinamico.

Neste trabalho sédo apresentadas técnicas e algerigpie permitem a deteccao,
identificacdo, implementacdo e melhoramento Megablocks assim como um estudo
aprofundado do uso ddegablockcomo unidade de detec¢ao, sobre um conjunto adméang
de aplicacdes de referéncia.

As técnicas propostas para o melhoramento do desgrapncluem o desenrolamento de
loops internos e @ipelining de Megablocks. Experiéncias que consideram estascas e
realizadas sobre um conjunto de 61 casos de estideferéncia revelam unaeleracao
média de 5,8 (de 0,% até 3X). Estes valores de aceleracéo consideram a execagéleta

dos casos de estudo e incluem os custosomunicagéo entre o GPP e o RPU.

Abstract

Typical embedded computing systems based on gegnamabse processors (GPPs) can be
extended with coprocessors, such as ReconfiguRtdeessing Units — RPUs, to improve
performance characteristics such as execution éint#or energy consumption. A common
step needed for mapping computations to these magstess the use of traditional
hardware/software co-design. However, this stepugsally time-consuming, non-trivial
knowledge about digital system design is requieed] the resultant partitioning is typically
tied to the system architecture being consideretis Tprevents the portability of
hardware/solutions, as well as performance poitgbibetween different embedded
computing devices.

This thesis proposes novel techniques for dynatgiqadrtitioning applications at the
binary level. The approach addresses the autonmaigration of computations during
runtime, from a GPP to an RPU acting as its com®me The proposed techniques focus on
the identification and mapping of a novel kind obp, named Megablock, to an RPU. The
Megablock was designed to be identified during imatand to be a bridge between the
sequential code of the GPP and the configuratiommRPU. The work presented shows
methods and algorithms for the detection, iderdtfan, implementation, and optimization of
Megablocks, as well as an extensive study of thpaoh of using the Megablock as a
detection unit over a comprehensive set of bencksnar

The proposed techniques for optimization of Megekdoinclude unrolling of inner loops
and pipelining of Megablocks. Experiments consiugia coarse-grained reconfigurable array
as RPU, coupled to a soft-core microprocessor amaguthe techniques proposed in this
thesis, reveal average overall execution speedogsding all communication overheads, of
5.6x (from 0. to 32) over the software execution, when consideringtao$ 61 integer

benchmarks.

Keywords: Dynamic Partitioning, Reconfigurable Computing, opbo Pipelining,
Heterogeneous Architectures, Runtime Reconfigunatidinary Translation, FPGA,

Instruction Trace, Megablock, Embedded Systems

Acknowledgments

First and foremost, | would like to thank my advisdodo Manuel Paiva Cardoso, for
taking me as his student, for all the time he speotind my work and for allowing me to do
most of the work far away from his lab. | wouldalge to thank my co-advisor, Professor
José Carlos Monteiro, for having accepted to cestge my work.

Also very important to this thesis was Nuno Paulifar implementing in a system
prototype some of the ideas of this thesis. Theynamails where we exchanged ideas were
invaluable; Jodo Canas Ferreira, Nuno’s advisar p@dieving in the work we were doing;
Jani Negrier for sharing the hardships of the PRi2ardo Jeremias, Tania Lopes and Ana
Pereira, for the continuous support during theithesd in particular the madness that is the
final sprint; my parents, Dulce Bispo e Carlos \Asgfor the amazing support they have
always given, and to my sister, Sofia Bispo, whe &lavays been there.

However, this work would not have been possibléaut the support of the many people
| have met during the several years that took BB, and they also deserve a mention. |
want to thank Adriano Sanches, which took the Phih@ same time as me and under the
same advisor, for the events we have shared; mgagples from Oporto lab, Ali Azarian,
Ricardo Nobre, Tiago Carvalho; André C. Santos ftasibon; Carlo Galuzzi from Delft, for
providing feedback on the mathematical formalisrhshe Megablock; Aldric Negrier, for
lending me “his” lab in Algarve; Ana Moreira, foelping me getting on track on one of those
difficult PhD moments; Ricardo Avo, for keeping mnedated.

| want to thank the many interesting people | hmet in conferences, which made the
experience much more interesting and worthwhilehsas (but not limited to) Bryan Olivier,
Christian Plessl, Christian de Schryver, Diana Goger, Dirk Koch, Eduardo Marques,
Eduardo de la Torre, Glen Gibb, Jing Yan, JuanefiaPKazuei Hironaka, Lee Ping, Michael
Hubner, Nabela Koob, Nelson Blanco, Ricardo Mendticardo dos Santos Ferreira, Rui
Policarpo, Viktor Prasanna, Yale Patt, and mangrsth

| thank the support given by Fundacéo para a Giémdiecnologia (FCT), which provided
a doctorate scholarship (SFRH /BD/36735/2007)Herduration of the PhD.

vii

Table of Contents

RESUMIO ... e I
Y 6] 1 = T OO PP PRPPP PP Y
ACKNOWIEAGMENTS ...t eeeeee e e e e e e ettt s e e e e e e e aeaaaees Vil
Table Of CONENES.......uiiiiiii i e e e e e e e es IX
1o L= o) B o 11 = Xiii
INAEX Of TADIES ... e XVil
GlOSSANY Of TEIMS ... e e e e e e e e e aaaees XiX
R 1 1 oo [F o1 1o o PO PRRTPPP 1
1.1 Hardware/Software CO-DeSIgN e eeeeerrrminnniaaanaeaaaeeaaaeeeeeeeeieeeen 1
1.2 DynamicC PartitioNinNgccooeiiiiiiiiiiiiiiiiiiiae e s 2
1.3 Thesis Statement and Main ContribUtiONScccceevveiiiiiiieiiii e 4.
R @ 1 (o F= T 4= 11 0] o FS TR UPPRPUPPRRR 4
P22 = 7= T4 (o | (010 T H U 7
2.1 General Purpose Processors and Execution FIOW..............ouvuiiiiiiiiiiiiiinnneennnn. 7
2.2 DaAta HAZAIUSoueeiiiiiiiiiiieeee ettt e e e e e e e e 8
PG B O] o] {0 o1 c3S1{] = TP 8
2.4 Coprocessor TradeoffSoovviiiiiiiiiicemmmmecis e 9
2.5 Reconfigurable Processing UNitS..........cicccceeeieiiiiiiieeeeee e 10
2.5. 1 FPGAS .o e 12
2.5.2 CGRAS. . ——— s 13
2.6 Dynamic Compilationccoviiiieiiiiiiieeeiiirs s e e e e e e e e e e e e e eeeeerenennnaannne 14
2.7 SUIMIMAIY ..ottt ettt e e e e emaam et a e e e e e eeba e e e e eeeba e eeeeessnn s saaeaeeeeesnnnnns 17
3 REIAIEU WOTK ..ottt e e e e 19

3.1 Binary TranSIatiOnoeeuuueeeeiiiiee et s 19

3.2 RPU AICHITECIUIES ...ttt e e 20
3.3 Dynamic Partitioning APProachesuuueuuuuiiiiiiiieeee e 21

.31 WARP e e e 21

.32 G A e s 27

3.3.3 DIM s 32

3.3.4 OVEIVIEW ...ttt e e e 35
IR YU 01 0 1 = 1 U UPPRT 38

N I 1= 01V =T = o] o o 39

R Y [1AV (o] o PP 39
v Y/ [=Yo = o] (o Tod S D= {111 o] o 42
4.3 MegabloCK DEteCHIONcvuiiiiiiiiiee e e e e 44
4.4 Megablock Intermediate RepreSentationcoooeeeeeeeeeeeeeeeeeeeeiiiiennnnns 47,
4.5 Adapting Source Code to Megablock Detectioncccoeeevvviiiiieeereiiiinnnn. 50

4.5.1 General Definition of the Transformationsccooeiiiiiiiinnnee. 50

4.5.2 C Transformations Targeting the MicroBlaze Processa................ 51
4.6 SUIMIMAIY ..euuieeeieeiie e e e eeeia e e e e eetaemmnm s e eeeeesaa e e eeaeestaa e eaaeessnnaeeaanennessnnnaeees 53

5 Transforming and Implementing MegabloCKs ... oo 55

5.1 Graph Transformationsccoooeeiiiiiicceeeeiees s e e e e e e e e e eee e s 55

5.1.1 Mapping MicroBlaze Assembly to Graph IR.....cceeeerivviiiiieiiiinnennn. 55

5.1.2 Constant Folding and Propagationceeeeeeeeeeiieeieeeeceeeeeeeeeeeiines 57

5.1.3 Identity SIMPlficatioNsccevvviiiiimmrei e 58

5.1.4 Multiplication to MUIIPIEXETccevvviiiiieeee e 58
5.2 Hardware Module for Megablock Detectioneevvveeviiiiiiiiiieeeeeeeeeeeee, 58
5.3 Megablock Translation using the Graph IR ... irieieiiiiiicieee e, 16
5.4 Megablock 1dentifiCationeuueiieeeeeiiiiieee e 65
5.5 Architectures for Implementing Megablocks ..., 67

X

5.5.1 General 2D CGRA. ... e 69

5.5.2 Specialized Array (SAT) .o e 71
5.5.3 Specialized Reconfigurable Array (SRA)covuuuiiiiiiiiiiiieiieeeeeeee, 72
5.5.4 Folded CGRA (1D CGRA) ..ot eeeeeeseeeeeeeeeeeee e, 73
5.6 Megablock PIPeliNiNgiiiiiiiii e 74
5.6.1 Inter-lteration DEPENdENCIESe e e eveeveeveniiiiieee e e e e e e e eaeaens 75
5.6.2 Architecture for Pipelined Megablocks.......cccceeivviiiiieiiiiiiicieee, 78
5.6.3 Megablock Pipelining Algorithmcocemeeeeiiiee e, 83
5.6.4 Hardware Support for Megablock Pipelining.............ccoovvvvvvvviinnnes 86
5.7 SUMIMAIY ..ottt e et e e e et e e e et e e e e et e e e e ena s e e enanneees 88
6 EXperimental RESUILS..........ccooiiiiiiieeeeeeee e e e e e e 89
6.1 EXPerimental SEUDcooo o ittt 89
6.2 MegablOCK COVEIAJE e e ettt s e e e e e e e e e e e e e eeeeeeneeeees 92
GRS \V [=ToT=To] [oTod 1Y, F=1 o] o1 oI U 97
6.3.1 Baseling RESUILS.........cccoiiiiiiiiiii e 98.
6.3.2 If-CONVEISION ..ottt 107
6.3.3 Graph Transformations...........ooooi it iececeecr e 113
6.4 Hardware Module for Megablock Detectioncooevviiiiiiiiiiiiiinneeeeeeeeee, 116
6.5 Megablock PipeliNiNguuuuuiniiiiii s e e e eaanees 118
6.6 Application EXamPIES........cccoiiiiiiiiiees e eises s e e s e e e e e e eeeeeeeeeesaeennn e 127
6.6.1 3D Path Planning Applicationceeeeeeeeiiiiieeeeeeeeeeeeeeeeiiiiienns 127
6.6.2 Dynamic Partitioning on an Embedded Processor = fir............... 128
6.7 SUIMIMAIY .euiiiiiieiite ettt e et e et ernmm et e e et e e e e e e e et e e e et s e e e sbnseneanesa e eeennns 132
T CONCIUSIONS ..ottt ereee ettt e e e e s e e e e 135
7.1 FULUIE WOTK ...ttt 137
8 REFEIEINCES ... e 141
Appendix A — SRA Implementation e eeeeeeiiiiiii e 151

Appendix B — Additional RESUILScooceeeeii e 157

B-1 Baseline GEOMELrC MEANS........cccoeiiiiiiiieeeee e 157
B-2 If-Conversion GEOMELNC MEANSccccuiiiiiiiiie e 158
B-3 Pipelining (Sequential Schedule) Geometric Means................coovvvvvnnnne. 159
B-4 Pipelining (Overlapping Schedule) Geometric Means...............ccceevvveennn. 160
F Y o] o1 T b G I Yo £ RSP 163
ADOUL ThE AULNOT ... e 167
1 T0 = G TP RP PR PPPP 169

Xii

Index of Figures

Figure 1.1. Block diagram of a typical target sgst@hich includes a RPU coprocessor acting
as an accelerator Of the GPP. ... e e 2

Figure 2.1. Example trade-offs when using a COB®@Rccooviiiiiiiiiiiiiiiiiiie e 10

Figure 2.2. Possible two-dimensional structuredoeconfigurable fabric (source: [36]). FU
identifies Functional Units, MEM identifies localemories, and IOB identifies Input/Output

0] 0 T0d G O PPPPPPPUPPPPPTPR 11
Figure 2.3. Types of RPU coupling with respecti® host system.ceeeeiiiiiiiiinene 12
Figure 2.4. Dynamic Hardware-Software Partitionimgblem formulation. 16
Figure 3.1. Block Diagram for the WARP Processou(se: [13]).cccoovverrriririnnnninnnnnnn. 22
Figure 3.2. Block Diagram for the W-FPGA (SOUIrCE3]]. .ccooevveeeeeeeeieeeeeeeee e 23
Figure 3.3. Binary to Hardware Translation FlowUi®: [13]).coooeeeeeiiiiiiiieiiiiiiiiiiiene 24
Figure 3.4. CCA-Enabled Processor Block Diagranii@®i[53]).cueeeeeerieeeeeeenireeeeeninnnns 28
Figure 3.5. Example of a CCA Implementation (SOUB&).uvvruiiiiiiiiieeiiiiiieeeeees 28

Figure 3.6. Mapping a subgraph into CCA (sourc8)})[Sn the left are shown a sequence of
instructions representing a subgraph code (top)pa@@A structure (bottom); in the right side

of thesubgraph codare shown the steps performed by the mappingitiguor................... 31
Figure 3.7. DIM Block Architecture and Configurati&xample (source: [14]).................... 33
Figure 3.8. Dynamic translation in the DIM Architei@ (source: [14]). ccccoeeeeiiieiiieeeeeenen 34
Figure 4.1. a) Upper bound for overall applicatspeedup as a function of the coverage, and
b) ratio between Speedsiprai and Speedup, as a function of the coverage................... 41
Figure 4.2. Example of the CFG of an inNer 100P.........coooooeiiiiiiiiiiiiiiii e 42
Figure 4.3. a) C code for max function and b) the MicroBlaze assembly code for a
Megablock representing one of the possible exegudadhs.cceeiiiiiiiiiiiinieceeeeee. 44
Figure 4.4. Algorithm for detection of squares,ta@ maximum size M.cccc.cvvveees 45.
Figure 4.5. Program execution partitioning accaydito basic blocks, fragments, and
ALY F= 1 o] o o &SR a7
Figure 4.6. Types of nodes and possible connectioasMegablock graph.ccccceeeeennn. 48
Figure 4.7. A data connection between two OperatmiesS.ccoevveeeeeeeeeeereeeeeeeiieiinnnns 49

Figure 4.8. Examples of the target code subjettatesformation: a) single if statement; b) if-
else statement; c) a chain of if-else statemertts avbitrary size.cccevvvvvvvvmmmmmenn. D1

Figure 4.9. Equivalent code when applyifigonversionto a) single if statement; b) if-else
statement; c) a chain of if-else statements WItII@Iry Size...........ccccoeevviviiiiiiiiiiieeeenneen. 51

Xiii

Figure 4.10. How to calculate the teconditionin C using a) plain C and b) inline assembly,

when targeting the MIiCroBlaze ProCESSOr.cuuuuiuuiriiiiiiiiiee et 52
Figure 4.11. Applyindf-conversionto a single if statement in C, when timex operator is a)

a multiplication and b) @ I0gICAI.oooiiiiiiiiiii e 52
Figure 5.1.Mul To Muxtransformation: a) graph before the transformai®mpplied; b)
graph after the tranSTOrMALION. coummeeener et e e e e e eaeas 58
Figure 5.2. Hardware solution for Megablock det@Tli..............ccovvvveerivieennniinee s e 59
Figure 5.3. Diagram for the Megablock DeteCtOr. oeuvvueeiiiiiiiieeiiee e 60
Figure 5.4. Diagram for a hardware implementatibthe Squares Detector.ccccc...... 61
Figure 5.5. Possible chain of steps ifiranslationphase. ... 61
Figure 5.6. Algorithm for the functiorearrangeGraph.............ccccceceeiiiiiiiie e 63
Figure 5.7. Algorithm for the functiorearrangeNode..............ccooiiiiiiiiiiiiiiiiiii e, 64
Figure 5.8. Example of the functioearrangeNode...............cceeeiiiiieiiiieeieeeceeeeeeeeeeeeeaees 65
Figure 5.9. Routing algorithm in the Map SteP oo 65
Figure 5.10. General system architectures for Miegabmplementation. 68
Figure 5.11. General architecture for a 2D CGRAedaRPU which supports Megablocks. 70
Figure 5.12. Two possible SAr instances for twdinégs Megablocks.ccccoeeevviiieen 42
Figure 5.13. SRA instance for two hypothetical MEQEKS..............cooeviimiiiiiiiiiinnieieeee 73
Figure 5.14. General architecture for a Folded C&fRé8ed RPU which supports
AV LT F=1 o] (o o1& TP SRR 74
Figure 5.15. C code for@CSUNMUNCLION.cccoiieeeeeiiiiiceeeeii e 76

Figure 5.16. Assembly instructions of the repeapatiern of a Megablock found in the trace
of vecsumrunning on a MicroBlaze processor, and their gpoadent translation to

operations to be mapped t0 @ CGRA. ... e 76
Figure 5.17. Graph representation of the repegpiaigern of the Megablock found when
EXECULINGVECSUNMNL. ...ttt e et e ettt e e e eeee e e s e e e e e e e e e e e e e eeeeeebbnbba e e e e e e e e eeaaaaaaeaaaaaeeeees 77
Figure 5.18. General blocks for Megablock pipeliegdcution.cccoeeeeeeeiviieeevsmees 79
Figure 5.19. Execution of an LM with three Stages............cceeiiiiiiiieiiiiiiiieeeeeiieeeeeeeeeies 79
Figure 5.20. Possible schedules for the modulespipelined RPU.ccvvvvviinnnnnn. 81
Figure 5.21. Execution using an overlapping scheduth an LM with 3 stages. 82
Figure 5.22. Algorithms for IM graph Creation..................eeiiiieiiiie e 85
Figure 5.23. Input Module (IM) graph for a Megalddound invecsum.............cccccevennnnnn. 86
Figure 5.24. Loop Module (LM) schedule for a Megaid found invecsum....................... 86
Figure 5.25. General architecture for a 2D CGRAedaBPU which supports Megablocks
and MegabloCK PIPEIINING.uuuee e e e e e e e e e e e e e e e eeeeeaaeasnnn e e e aaeeaaeaeees 87

Figure 6.1. Average coverage of the complete séteathmarks when applying Megablock
detection and varying several ParametersS. ... i iiiiiiiiiiiaee e eeeeeee e 93

Xiv

Figure 6.2. Megablock detection ratio in the cortgleet of benchmarks. Indicates the ratio
of benchmarks were valid Megablocks could be detkct..............oiiiiiiiiiiii 94

Figure 6.3. Individual coverage values in the maét of benchmarks, for Megablock
detection using the default setup and Backward &rdmwop Detection..................cc....... 96.

Figure 6.4. Upper-bound speedups in the baselise fta three scenarios: execution time of
the RPU is equal to Megablock CPL, execution tirhthe RPU is zero and execution time of

the RPU and communication delays are Zero. ... ccciieeeeeeeeeeeeeeeeeiiiiie s 103
Figure 6.5. Average a) speedup and b) IPC whenngthe maximum number of load/store
8T ES I o= g 0 Y 104
Figure 6.6. Average a) speedup and b) IPC wheningryhe maximum number of
arithmetic/l0giC UNItS PEF FOW.ccoiiiiiieeeeeiieiiieee e e e e e e e e e e e e e e e e as 104
Figure 6.7. Average speedup when varying the rhabveen the RPU and GPP clock
LLC=T0 [0 T= o= PSS 106
Figure 6.8. Individual overall speedups for thedbag case, considering an RPU with a
maximum of 8 parallel FUs and 2 load/store operatiper cycle.ccccevvvvvvvviiinnnnns 107
Figure 6.9. Upper bound speedups afteonversiona) when considering inner loops and b)
VT o WUl o] | [TaTe T oY T=1 g (o o] o 1 S 112
Figure 6.10. Average a) speedup and b) IPC for tadapode when varying the maximum
numMber of 0ad/StOre UNItS PEI FOW. ... eeereeeeerrmrninnniaaaaeeeeeaeseseesseeeeeeessereemmmmnne 112
Figure 6.11. Average a) speedup and b) IPC for tadapode when varying the maximum
number of arithmetic/I0giC UNItS PEI FOW. ... uuummreerrrrrerrniiiieeeeeeeeeeeeeeeeeeeeessrnnnnneeesnnnnnnnns 113
Figure 6.12. Average speedup for adapted code whamging the ratio between the RPU and
(€1 e (o ox PP PPPPPPPPP 113
Figure 6.13. Average a) speedup and b) IPC aftgplgtransformations, when varying the
maximum number of 10ad/Store UNItS PEI FOW ..eeeeee.iiiiiieeeiiieeeeeeeee e 115
Figure 6.14. Average a) speedup and b) IPC aftgplgtransformations, when varying the
maximum number of arithmetic/logiC UNItS PEr FQWa.-.......cccovivvevrieiiiiiiiieee e eeeeeennn 116
Figure 6.15. Average speedup after graph transfooms when varying the ratio between
RPU and GPP ClOCK frTEQUENCIES. ommmmmms e eeeeeeeeeeeeeasaseseeesssssnnnnnnnnssnnnaneeees 116
Figure 6.16. LUTs, FFs and estimated maximum fraqes for Megablock Detector
aF Vo 1YY= T 0 [Ty o P 117

Figure 6.17. FPGA resources increase when usirgipipg with overlapping schedule over
the non-pipelined IMpPleMENtAtioN.cccceeeiiii e 122

Figure 6.18. Average a) speedup and b) IPC affeliping with overlapping schedule, when
varying the maximum number of load/store UNItSHORY.veeeiieiiiieeeeeeeeeeeeeeiianns 124

Figure 6.19. Average a) speedup and b) IPC affeliping with overlapping schedule, when
varying the maximum number of arithmetic/logiC BITIBI TOW.........ccoovevieeieiiiiiiiiiiiiiias 124

Figure 6.20. Average speedup after pipelining venerlapping schedule, when varying the
ratio between RPU and GPP cloCK freqUENCIES.. coeiiviiiiiiiii e 124

XV

Figure 6.21. Individual overall speedups for a i architecture with overlapping
schedule, considering a maximum of 8 parallel aréhc/logic FUs and 2 load/store

operations Per CIOCK CYCIE.ooovveiiei e e e e e e e e e 125
Figure 6.22. C code forf fUNCHION.ooiiiiiiii e 129
Figure 6.23. Assembly code and corresponding gogeinations for théir Megablock. 130
Figure A.1. System Architecture (SOUICE: [27] k- . .ceuuiiiiiiiiiiiiiiiiieiee e 152
Figure A.2. RPU Architecture (SOUICE: [27]). wmmmmeerrrrrurunnsaaiseeeaeeeareereermsssssrmnnnnnssssnnnns 152
Figure A.3. Array Of FUS (SOUICE: [27]). «oieiiiieiiiiiiiiiiiiiiieee e e eeeeeeveeeeeeeeseeeeennens 153
Figure A.4. PLB Injector Architecture (SOUrce: [R7]......couveemumeeieiiiiiiieeieeeeeeeeeeeeeeeninnns 153
Figure A.5. Speedups for DDR and BRAM scenario (GBYR7]). ...ccooveevrrrrrrmmiiiniieaeeeeeenn 35
Figure B.1. Average a) speedup and b) IPC in tiselbee case when varying the maximum
number of load/store units (QEOMELIIC MEAN).. cooaecreeeiiiiiiiiiiee e eeeeeeeeeeeees 157
Figure B.2. Average a) speedup and b) IPC in theelbee when varying the maximum
number of arithmetic/logic units (EOMELrC MEAN)........uuuiiiiiiiiieeeeeiieeeeeeeeeii e 157
Figure B.3. Average speedup in the baseline casswhrying the ration between the RPU
and GPP clock (QEOMELriC MEAN).cii et eeeeee e eeeeeennenes 158
Figure B.4. Average a) speedup and b) IPC for adapbde when varying the maximum
number of load/store units (QEOMELIIC MEAN).. coocecreeeiiiiiiiiiieee e eeveeeneeeeeaeees 158
Figure B.5. Average a) speedup and b) IPC for adapbde when varying the maximum
number of arithmetic/logic units (EOMELrC MEAN)........uuuiiiiiiiiee e 158
Figure B.6. Average speedup for adapted code wheying the ration between the RPU and
GPP cloCK (QEOMELIC MEAN). .. ittt ee e e e e e e e e e e e e e eees 159
Figure B.7. Average a) speedup and b) IPC for adapbde when varying the maximum
number of load/store units (QEOMELIC MEAN).. coocecreeiiiiieiiiiieee e eeeeeeeeeeaeees 159
Figure B.8. Average a) speedup and b) IPC for adapbde when varying the maximum
number of arithmetic/logic units (QEOMELIIC MEAN)........uuuiiiiiieiie e 159
Figure B.9. Average speedup for adapted code whgying the ration between the RPU and
GPP cloCK (QEOMELIC MEAN). ...ttt e e e e e e e e e e e e e eees 160
Figure B.10. Average a) speedup and b) IPC for tedapode when varying the maximum
number of load/store units (QEOMELIIC MEAN).. coocecreeeiiiiiiiiiieee e ieveeeneeeeeaeees 160
Figure B.11. Average a) speedup and b) IPC for tedapode when varying the maximum
number of arithmetic/logic units (EOMELIC MEAN)........uuuiiiiiiiii e 160
Figure B.12. Average speedup for adapted code wheying the ration between the RPU
and GPP clock (QEOMELriC MEAN).cii it ee e e e e e eeeeeeennaes 161
Figure C.1. Options for program Megablock EXtractar...........ccccoevvvieeieeeiieiiieieeiieeeee, 163
Figure C.2. Options for program Megablock EStim@atio.............cccceeevveiiiieeeiiniiieiiieeen, 164
Figure C.3. Options for program VHDL for Megablocks............ccccoiiiiiiiiiiiiiiiiiiiiiieees 165
Figure C.4. Options for program VHDL for Megabldoktector.cccccceeeiiiiineennnn. 651

XVi

Index of Tables

Table 3.1. Summary of characteristics for the threggesentative approaches: Warp, CCA,

AN DIM. Lottt e e e e ettt e e e e e e e e aeeas 36
Table 5.1. Additional information acquired from timstructions in the Megablock sequence.
.. 56
Table 5.2. Characteristics of the proposed Meg&hlbentification methods: SAI and MSI.67
Table 5.3. Dependencies between the modules qfediped RPU.ccoooeviiiiviiiiiiinnee 80
Table 6.1. Characteristics of the benchmarks wfoa the seho-ifscccceiinis 90
Table 6.2. Characteristics of the benchmarks wfdam the seffs.............cccccviiiiiin. 91
Table 6.3. Megablock characteristics for fimeifs set, only inner l00ps.ccceeiiiiiienn. 99
Table 6.4. Megablock characteristics for ifseset, only inner loops.cccevvvvveeeeee. 100
Table 6.5. Megablock characteristics for tieeifs set when applying unrolling. 101
Table 6.6. Megablock characteristics for tiseset when applying unrolling.................. 101
Table 6.7. Cycle count and ratio of tifeset, before and aftdrconversion...................... 108
Table 6.8. Characteristics of the benchmarks wioaim the setfs (adapted)................... 109
Table 6.9. Megablock characteristics for tiseadaptedset, only inner loops. 110

Table 6.10. Megablock characteristics forifiseadaptedset when applying unrolling....... 111
Table 6.11. Decrease in the number of Megablockatioas, for the unrolledho-ifs set

considering three transformations.ccceeiiiii e 114
Table 6.12. Decrease in the number of Megablockatioas, for the unrolleds-adaptedset
considering three transformMations.ccceeiiiii e 114
Table 6.13. IPC when the Megablock for each bencknsaexecuted in several platforms.
.. 120
Table 6.14. Megablock mapping characteristics emitn-pipelined architecture. 120
Table 6.15. Comparing a non-pipelined and a pipdlirarchitecture with sequential
ST =0 (1] 1T o OSSR UPRPRPPPN 120
Table 6.16. Comparing a non-pipelined and a pipélirarchitecture with overlapping
ST =0 (1] 1T o OO UPRPRPPRIN 121
Table 6.17. CPL comparison between baseline arelipgal with overlapping schedule. .. 126
Table 6.18. Characteristics for the execution efdapplication 3dpp.ccceeviiiiiiiinnnns 128
Table 6.19. Execution times for several implemeéotst of the pattern detector for
AV T=To F=1 o] (o o1& PP 131
Table 6.20. Average execution times in millisecootithe Translationsteps. 132

Xvil

Table A.1. RPU FPGA Implementation

XVili

Glossary of Terms

ALU Arithmetic Logic Unit. A digital circuit that perfons

arithmetic and logical operations

BRAM Block-RAM. Configurable random access memory

module present in most Xilinx FPGAs.

CGRA Coarse-Grained Reconfigurable Array. A reconfigleab
array usually including ALUs as processing elememd

programmable at the word-level.

Contiguous Subsequence Subsequence formed by consecutive elements of a
sequence. The same as substring when the sequénce o

elements forms a string.

Coverage Portion of GPP execution that will be replaced by
execution in an RPU, over the total execution wtien

program runs only in the GPP.

CPL Critical Path Length. In the context of RPUs, thenber
of clock cycles needed to complete the executioth pa

with the highest number of cycles (i.e., criticathp).

CPU Central Processing Unit. The portion of a computer
system that carries out the instructions of a cdempu
program, to perform the basic arithmetical, logicahd
input/output operations of the system.

Critical Loop Loop region of a computer program where a high
proportion of executed instructions occur, or wherest

time is spent during the program's execution.

Xix

DHSP

Dynamic Partitioning

Executed
Threshold

FF

FPGA

Fragment

FU

GPP

Hotspot

ILP

Instructions

Dynamic Hardware-Software Partitioning. Technique
where during runtime, sections of a software-only
program are moved and executed in dedicated haedwar

components.
Same as DHSP in the context of this thesis.

Megablock detection parameter. If the number of
executed instructions in the processor correspontirn
detected Megablock falls below tegecuted instructions

thresholdthe Megablock is ignored.

Flip-Flop. Circuit with two stable states which cae
used as a memory element to store state informafion

key component of modern FPGAs.

Field-Programmable Gate Array. Integrated circuit
designed to be configured after manufacturing. Ugua

programmable at the bit-level.

Sequence of executed basic blocks which do not jump
backward.

Functional Unit. A digital circuit which can perfar
operations and calculations. A more general fornthef
ALU.

General Purpose Processor. Specific term for a CPU
which is programmable through instructions and leen

designed to execute generic applications.
Same as Critical Loop in the context of this thesis

Instruction-Level Parallelism. The parallelism asated
with the instructions and/or primitive operatiom&itt can

be performed simultaneously.

XX

Induction Variable

IPC

Kernel

LM

LOC

LUT

Maximum Pattern Size

Megablock

Input Module. Section in the architecture of a pipe
Megablock responsible for generating the inputsefach

iteration.

Variable which value is increased or decreased fixed
amount on every iteration of a loop, or is a linkarction

of another induction variable.

Instructions Per Cycle. Term used to describe aped
of performance, the average number of instructions

executed per clock cycle.

Intermediate Representation. Data structure which
represents a program or part of a program in atraats

way.
Same as Critical Loop in the context of this thesis

Loop Module. Section in the architecture of a piped
Megablock responsible for executing the iteratiohshe

loop.

Lines of Code. Software metric used to measuresitre
of a software program by counting the number afdim

the text of the program's source code.

Look-Up Table. Hardware structure used to implement
Boolean logic functions in hardware, such as ANIR O
and XOR. A key component of modern FPGAs.

Megablock detection parameter. Maximum number of

pattern elements of a Megablock that can be detecte

Loop structure which represents a repeatable sequan

instructions in the execution trace.

XXi

MSI

PLB

RPU

SAl

SAr

SM

SRA

Subsequence

Megablock Signature Identification. A Megablock
identification technique which relies on an indivad

signature for each Megablock.

Processor Local Bus. Bus structure provided bynXilio

develop system architectures in Xilinx FPGAs.

Reconfigurable Processing Unit. A reconfigurable
hardware unit for dedicated computations.

Single Address ldentification. A Megablock iderg#tion
technique which relies on the address of a single

instruction.

Specialized Array. An RPU implementation which

corresponds to a single Megablock.

Store Module. Section in the architecture of a imeel
Megablock responsible for executing store operation

according to their original order.

Specialized Reconfigurable Array. An RPU
implementation which supports several Megablockd an

which is runtime reconfigurable.

Part of a sequence of elements, where element dsder
maintained but consecutiveness is not enforced, lidgs

a subsequence abcde

XXii

Substring Subsequence formed by consecutive elements of a
sequence S of symbols (a string). Ebgrd is a substring

of abcde

Type of Pattern Unit Megablock detection parameter. The kind of pattern

element used for detection (e.g., instruction,®bkick).

Unrolling of Inner Loops Megablock detection parameter. If enabled, givesripy
to Megablocks with more pattern elements, forming
Megablocks with unrolled inner loops. Otherwiseyegi

priority to Megablocks whose pattern has less etdme

XXili

XXV

1 Introduction

The challenging requirements of designing and imgleting high-performance and
flexible embedded systems at low cost have madesheof field programmable gate arrays
(FPGASs) an attractive option [1]. These modernhkigpacity devices are being used as
platforms for implementing complete systems-on-chid include one or more general
purpose processors (GPPs). Even as computatiais shithe multi-core paradigm, there is
still the need for acceleration of specific compota tasks [2, 3], e.g., by connecting
application-specific accelerators to the GPPs.

A flexible solution for the hardware accelerat@wshe use of Reconfigurable Processing
Units (RPUSs) [4, 5]. Figure 1.1 illustrates the amgation of a typical architecture coupling
an Reconfigurable Processing Unit (RPU) to the GRABny different possibilities can be
used to couple the two main components of thisiaciure [6]. In the target organization
illustrated, the RPU communicates with the GPP ibgctl connections and both have access
to the system memory (i.e., the RPU acts as ativadl coprocessor). However, it is usually
required a high design effort to implement thosg#eys. The design-flow combines software
development and hardware design, the latter ususflyting from a specification in a
hardware description language (HDL) such as Velifggand thus requiring hardware design

expertise.

1.1 Hardware/Software Co-Design

Hardware/software co-design [8, 9] is a methodolémydesigning embedded systems
consisting of hardware and software componentsn#uortant part of hardware/software co-
design is hardware/software partitioning. It canused to select and map the parts of the
application that will be executed in the GPP andh@ RPU. It contains steps such as the
detection of computation-intensive sections in #pplication (also known as hotspots or
critical sections), mapping the computations toheaé¢ the components of the target
architecture (i.e., the software and the hardwamaponents), and adapting the software

application (e.g., calls to special instructions arserted in the application source code) to

use the hardware component. This requires the tioseof synchronization and data
communication primitives.

- » Instructions

GPP

- > Data

RPU

\

Figure 1.1. Block diagram of a typical target syst@ which includes a RPU coprocessor acting as an

accelerator of the GPP.

Depending on the tools, the hardware/software @ocan range from mostly manual to
highly automated [10, 11]. For instance, and exangdl an automated approach is to use
high-level synthesis tools, such as Catapult Qr{fMentor Graphics), which translate C code
to HDL [12]. This often requires rewriting the soarcode to fit the translator’s requirements
and limitations. Implementing the interface betwé®n generated hardware and the software
is also necessary, a task which might require mohdit, manually-developed hardware, and
further source code modifications. In this scenati®e developer still needs non-trivial
knowledge on digital systems design, and adaptpggiGtions to use custom hardware is
done on an application-by-application basis.

There has been a continuous effort to automatentgeation of computations from a GPP
to custom hardware. In a promising approach thatijoaming is done over the binaries of the
application, while it executes on the processor, [14. The computation is transparently
moved from the GPP to the coprocessor. We refénisoapproach as Dynamic Hardware-
Software Partitioning (DHSP), or simply dynamictfaming.

1.2 Dynamic Partitioning

Delaying partitioning until the application execsitenables one to use information only
available at runtime. With this information it isogsible, for instance, to partition the
application according to its current execution,lding the implementation of more efficient

designs. Another possible application of dynamictifg@ning is to improve hardware

portability between different systems, by discovefyhe specific RPU that is being used by
the system at the time the application executes naapping the computation to that RPU.

Dynamic partitioning has its costs. As some of ffetitioning steps are moved to
runtime, there is additional overhead to be comsuieln addition, as execution time becomes
an important characteristic for the steps donenenliit is necessary to adapt current
algorithms or to propose new algorithms consideamgntime scenario.

Dynamic partitioning is reminiscent of dynamic calapon (also known as Just-In-Time
— JIT — compilation). During JIT compilation, seakecompilation steps are delayed until the
execution of the program (most notably, the geraratf machine code). The Java platform
[15] is probably the most popular example of dyrmagompilation, and has been used with
success to write applications which can executevariety of devices (e.g., smartphones) and
across several operating systems (e.g., WindowgQOdgalinux). The HotSpot [16] is an
example of a Java Virtual Machine which uses dycacompilation to bridge the gap in
performance between a compiled and an interprategliage [17].

Performing compilation directly from the programméiy is known as binary translation
[18]. It has been successfully used to transpareexlecute programs in platforms not
compatible with the ones they were originally colegi for. For instance, Pentium
microprocessors use hardware binary translatidrateslate instructions of the old x86 ISA to
the new ISA of the microprocessor [19]. The Rosif is a binary translation software used
by Apple when it moved the Macintosh from PowerBdntel processors, to allow previous
applications to run in the system without modificat Other example is the Crusoe [21]
microprocessor, which performs binary translatignainically in hardware. While in the first
two cases binary translation was used to improvapatibility, possibly at the cost of
performance, the Crusoe tries to achieve similaiopgance with a lower thermal envelope.
It translates and executes binaries written inltibel Xx86 ISA to a microprocessor which has
a substantially different architecture, designetleganore power efficient.

In this thesis we propose novel techniques for DHBRhe context of embedded
computing systems. In particular, we propose a Inkinel of loop, the Megablock, designed
for runtime detection and for adapting sequentalecto parallel computation models. The
proposed techniques focus on the Megablock, andvtrg presented here shows methods
and algorithms for the detection, identificatioomplementation, and optimization of

Megablocks (e.g., inner loop unrolling, pipelinid Megablocks). We also present an

extensive study of the impact of using the Megdblas a partitioning unit over a
comprehensive set of benchmarks.

1.3 Thesis Statement and Main Contributions

Thesis Statement:We can build a system which automatically movepdporiginally
meant to be run on a general purpose processor teconfigurable fabric, in order to
improve the execution of the program accordingame criteria (e.g., execution time, energy
consumption). The loops are moved while the unaddmyogram binary executes in the
processor, and by using adequate structures (itee, Megablock) and algorithms, it is
possible to consider techniques (such as loop ipipgl) not previously considered for
dynamic mapping computations to reconfigurable ifagor

The focus of this thesis is on the use of DHSP nmmbedded systems. The main
contributions of this thesis are:

* It proposes the Megablock, a repetitive pattermsftructions that represents a path in

the execution flow.

« An algorithm for detection of Megablocks based ompaitern-matching technique

which can be fully agnostic to the instruction fatnof the target GPP;

* A graph-based, architecture independent, internedepresentation for Megablocks;

« A scheme for applying aif-conversiontechnique to transform code such that it can

expose more useful Megablocks when dealing withrobimtensive applications;

» Proof-of-concept implementations for several of greposed ideas and evaluation

using an FPGA board;

* Atechnique which pipelines the iterations of Megaks in hardware;

* An extensive study of the impact of the Megabloaleroa comprehensive set of

integer benchmarks from embedded computing;

The results of this thesis have contributed toralmer of publications [22-28].

1.4 Organization

The remainder of this thesis is organized as fatow
Chapter 2 introduces the concepts needed for theeguent chapters of this thesis. The
covered subjects include compilation in general tbcstatic and dynamic), the

processor/coprocessor paradigm, and reconfigubrastbvare.

4

Chapter 3 introduces several research effortsarfidids related to our approach, such as
approaches based on traces, runtime reconfigurammhbinary translation. Furthermore, we
describe in detail three relevant approaches wliagdus on dynamic partitioning for
reconfigurable architectures. All the three apphegctransparently move instructions being
executed in a General Purpose Processor (GPPgdafrgurable hardware, bearing in mind
embedded systems as a target.

Chapter 4 describes the Megablock, a repetitiveepabf executed instructions found in
the trace of a program. In this chapter we progbseMegablock as a partitioning unit for
moving sequential code to the parallel computingdeh@rovided by RPUs and compare
with the partitioning units used in other works.eTbhapter also presents an algorithm for
detection of Megablocks, proposes an Intermediagprésentation (IR), and introduces
source-to-source transformations to detect additibregablocks.

Chapter 5 presents practical aspects related tontheementation of Megablocks. We
explain how to build the Intermediate RepresentaflR) introduced in Chapter 4, as well as
introduce a set of transformations which can bdieghver the IR. Although the detection of
Megablocks can be done offline, during a profilagdy we still need a method to identify
these previously detected Megablocks at runtimegnwthe application executes. In this
chapter we propose two methods for runtime Meg&bldentification. Finally, we present
several architecture models capable of implementiegablocks, and explain how we can
augment a Megablock-enabled architecture to sumpoetining of Megablocks.

Chapter 6 presents extensive results using theitpads introduced in previous chapters,
over a comprehensive set of benchmarks. We prassatts about Megablock coverage,
consider several scenarios regarding Megablock mggpe., baseline resultg;conversion
graph transformations), and show results for pigeliMegablocks.

Chapter 7 concludes the thesis and presents igelasvoto expand the current work.

Finally, we include three appendixes that presebaf-of-concept used to evaluate some
of the techniques presented in this thesis, aduditioesults, and a brief mention about the

most important software tools developed for thestk.

2 Background

The purpose of this chapter is to provide the comcepts needed to understand Dynamic
Hardware-Software Partitioning (DHSP). The coveseljects include compilation in general

(both static and dynamic), the processor/coprocgsmadigm, and reconfigurable hardware.

2.1 General Purpose Processors and Execution Flow

General Purpose Processors (GPPs) have been tiial @@mponents of computing for
the past decades [29]. High-level languages andpidera make GPPs relatively easy to
program and many of today’s applications run on &PP

Each GPP has an associated Instruction Set Artiniee@SA) [29], which defines the
programming part of the GPP: data type suppoxwedtl instructions, available registers, etc.
The binary representation of the set of instrudidirectly supported by a GPP is called the
machine language, and the human-readable versidheomachine language is called the
assembly language.

A program is formed by a sequence of instructidasl out sequentially, and uniquely
identified by an instruction address. When a prnograuns on a GPP, each executed
instruction can be viewed as a step given by tlugnam. By default, the GPP executes
instructions in sequence. However, certain insimastcan change the flow by instructing the
GPP that the next instruction to be executed isersgvinstructions ahead, or several
instructions before in the sequence. The changethef execution flow is typically
implemented by jump/branch instructions, which esenmonly referred to asontrol-flow
instructions

There can beonditionalor unconditionalbranches. Jump instructions (usually referred as
unconditional branches) always change the exectiten Conditional branches depend on a
condition to change the execution flow (e.g., juiihfhe value of a certain register is zero).
Conditional branch instructions define branchingngsin the code. A branch is a sequence of
instructions that is executed if the condition loé tranch instruction is met. Those branch
instructions represent a point where the executawm will take one of two paths (or more, if
the destination address when the branch is takeawvasiable). To make a distinction between

a jump/branch to an address after the jump/bramstinuiction and a jump/branch to an address
before the jump/branch instruction, the formerafied a forward branch, while the latter is
called a backward branch.

The sequence of instructions executed by the GRirgdan execution of a program is
called a prograntrace The trace represents all the paths and choicaspafticular program
execution. Note that different executions can gateerdifferent traces, depending, for
instance, on the branches taken during the progrsaoution.

Associated to jumps/branches is the basic block Bblock of code with a single entry-
point and a single exit-point. It usually corresgsrio the sequence of instructions between
the instruction executed after a branch, and tikéjoenp/branch instruction.

2.2 Data Hazards

Most GPPs follow the Von Neumann model [31], whatsumes that instructions are
executed sequentially, typically following the ordedicated by the program/compiler.
However, one can improve performance by reordesimge instructions. When reordering
instructions, it is fundamental to maintain thegoral functionality of the program. An hazard
happens whenever there is a data dependence betvegrittions, and a reordering of those
instructions changes the correct behavior of tlwgmam [29]. Consider two instructions, A
and B, where A executes before B. There are thossilple data hazards:

RAW (read after write): When instruction B fetches a result which is tent by
instruction A, but instruction A has not completget, making B read a (possibly) wrong
value.

WAW (write after write): When instruction A and instruction B write a riga the same
place, and the last instruction writing the resul\, instead of B.

WAR (write after read): Instruction A reads a value which is latter ovetten by
instruction B. Hazard happens when instruction Brawvites the value before instruction A

could read it.

2.3 Coprocessors

When GPPs are not able to meet certain non-furadti@guirements (e.g., execution time,
power dissipation, energy consumption), an effectiay to improve the GPP system is to

extend the GPP with a customized hardware unitheform of a coprocessor [8, 32].

8

Coprocessors can perform faster than a GPP foifeptsks because, among other things,
they allow for moreparallelism by providing additional computational units noégent in a
general casealternative computation modeighich can be more efficient for certain tasks
(e.g., data-streaminggpatial computingby replacing sequences of instructiotesn(poral
computing by direct connections between components, dimingsthe instruction overhead
related to fetch-decode stages [33].

However, developing and testing hardware is sigaiftly harder than software. When
using target architectures consisting of a GPP leduf a hardware unit (e.g., acting as a
coprocessor) one identifies which program sectiams most frequently executed and then
migrates those portions to the hardware unit. Tisnown ashardware/software co-design
[8, 9]. This approach is usually viable as mostliappons follow the 90-10 rule of thumb:
90% of the execution time is spent on 10% of thegm@m code [29], often found in small
groups of instructions which are executed in lomprhany iterations. Those code sections are
known by various names, e.grjtical loops kernels hotspots Most hardware/software co-
design approaches start by identifying the loopthefprograms.

2.4 Coprocessor Tradeoffs

Consider a computing system with a GPP runningogram, and that at some point the
system is at state A. After running the program dowhile, the system arrives at state B,
changing several elements of the system, e.g.vahes in the registers of the GPP, the
contents of the main memory. As a general case,cavesider that the objective of a
coprocessor is to help the processor going frote $tao state B, while allowing for a trade-
off between one or more parameters. It should bednthat it may not be necessary to arrive
exactly at the same state B, some of the valuedeammporary values which will not be
used after. However, if the state is the same, ameguarantee that if the execution continues
on the processor, it will be correct. State carehdifferent meanings: for a simple embedded
application it can refer to the actual state of slystem: the values in the registers of the
processor, of the memory at each address, etcimara complex system with virtual address
space and concurrent processes, the state cansfance, refer to the virtual state of a single
process.

Figure 2.1 shows some trade-offs we can achievenwiseng a coprocessor. The figure

represents two common parameters, execution timeamsumed energy. In case a), the GPP

executes the program and takes the system fromat@ Atto a state B, consuming a certain
amount of energy and time. Case b) consumes abewgame energy, but takes less time to
execute, while case c) takes the same time to ex&dile reducing the energy consumption.

Both arrive at the same state B.

>
2
oA State B
c
b) GPP+Coprocessor 1
_"';) P State B
9} a) GPP
IS
=1
1)
c
o
O
State B
c) GPP+Coprocessor 2
State A

Execution Time

Figure 2.1. Example trade-offs when using a coprossor.

When we go from a system state A to a system &atath the help of a coprocessor,
tackling the problem at the same level of the aergid states may provide a more fine-
grained control of the problem. This is the caseenviconsidering hardware/software co-
design: if, when working with an embedded applmatwhere the considered state is
composed by the contents of the processor regiatetf the memory, the partitioning was
done at the level of the assembly, instead of gaimgo the source code; if, when working
with a Java application where the considered gStatdhe one given by the Java Virtual
Machine (JVM) [15], the partitioning was done a¢ tlevel of the bytecode representation,

instead of going down to the processor implememtati

2.5 Reconfigurable Processing Units

One way to implement a coprocessor is to desigrApplication-Specific Integrated
Circuit (ASIC). This is the solution which usualbjives the best performance [34] with
respect to area and power. However, ASICs are raglse expensive: as any Integrated
Circuit (IC), they have initially high productiorosts and only become cost effective when
mass-produced. In addition, ASICs can only do wthay were designed for (the circuit is
unchangeable after fabrication). Usually, ASICs @designed only when: the hardware unit

will run a significant part of the computation; ile produced in high volumes; and when a

10

software-only solution would not give satisfactomesults (e.g., hardware video
encoders/decoders for established codecs, sucliP&6Gh and H.264).

These limitations associated to ASICs strongly wadé the use of reconfigurable
hardware [35]. Reconfigurable hardware usually sakee form of an IC with several
computational components and reconfigurable comrectSuch as the ASIC, all components
of a reconfigurable IC are already in place andhoate modified in the field. What makes
the hardware reconfigurable is the capability tange, through configuration, the functions
of the components and their connections.

Figure 2.2 shows a possible reconfigurable faltvat tan be used as an RPU in a system,
with components represented as named boxes, cednégt reconfigurable interconnect
resources. The components can be as simple asUWpdkables (LUTs) and Flip-Flops (FFs)
or as complex as Functional Units (FUs) with onemmre Arithmetic-Logic Unit (ALU),

memories or even entire General Purpose Proce§SBRs) [36].

[IOB‘ ‘ IOB‘ ‘ IOB‘ ‘ IOB‘ ‘ IOB‘ ‘ IOB‘

‘ IOB‘ ‘ IOB‘ ‘ IOB‘ ‘ IOB‘ ‘ IOB‘ ‘IOB ‘

Figure 2.2. Possible two-dimensional structure foa reconfigurable fabric (source: [36]). FU
identifies Functional Units, MEM identifies local memories, and IOB identifies Input/Output

blocks.

The interconnect resources can be very simple, @&lgwing connections between only
some neighbor components, or more complex, e.dowialg connections from each
component with any other component in the fabnput/Output Blocks (IOBs) can be used
for communication with components outside the RMRéconfigurable hardware can be
classified into two groups according to the dare-f their componentganularity) [37].

Fine-grained reconfigurable hardware has components which weitk data-sizes of a

11

couple of bits (e.g., LUTs, FFs). If the componemase higher bit-widths (e.g., from 8 to 32
bits), the reconfigurable hardware is usually cdesedcoarse-grained Finer granularity
means more flexibility on one hand, and higher bead on the other.

The degree of flexibility provided by the comporserdand connections of an RPU
determines the effort neededrt@mp computations to that RPU. An RPU with less flelxipi
in configurability is not as expressive, but reqaifower mapping effort.

The communication costisetween a GPP and an RPU depend on the kind pfioguhe
RPU has with the other components in the compusygfem. We can consider the four
general cases of coupling [38] represented in EiguB. They are ordered from the loosest
coupling to the tightest coupling. Loosely coupRBUs are easier to integrate in a system,
but usually have higher communication delays. Tyghbupled RPUs are attractive due to
lower latencies and communication delays, but natign with the host is more invasive and

usually implies co-designing the RPU and the GPP.

GPP Memory

Local Bus

RPU

:

4"

I/O Bus

a) RPU coupled to the 1/O bus

RPU <>

GPP

Memory

Local Bus

¢) RPU coupled to the CPU

GPP

Memory

RPU

A
A

Local Bus

b) RPU coupled to thiecal bus

RPU

GPP Memory

Local Bus

d) RPU integrated in th€PU datapath

Figure 2.3. Types of RPU coupling with respect tche host system.

2.5.1 FPGAs

Field-Programmable Gate Arrays (FPGAs) [39] are example of fine-grained

reconfigurable hardware. Although some FPGAs care ltwarse-grained components, such

12

as multipliers, their smaller and most common congmbs are LUTs and FFs, addressable at
the single bit level. FPGAs are mass-produced, ngaiiem relatively affordable, and their
extreme flexibility allows for broad design spacepleration. If the components of a
reconfigurable fabric have a sufficiently fine guéarity, as in the case of FPGAs, it is
possible to implement virtually most digital hardeaircuits, since their design components
include typical basic blocks used when designindGsS

To design hardware circuits for FPGAs, we typicallge Hardware Description
Languages (HDLs), such as VHDL [40] or Verilog [4$5pecific suite of tools (e.g., Xilinx
ISE [42]) can then synthesize the hardware destribéhe HDL into the configuration bits
of a specific FPGA (known as thieitstrean). Between the HDL description and the
configuration bits there is a number of importatéps, commonly handled by separate
programs [43].

The first step is to convert the description irdgit gates, by an RTL (Register-Transfer-
Level) Synthesistool [44]. At this point, the synthesis tool emydoa number of
optimizations, such a®gic minimization[44]. The logic gates are fed tonaapper which
will find a correspondence between the abstraciclggtes and the kind of components
present in a specific reconfigurable deviddlapping. The next step,Placement is
responsible to assign each of the components iddkeription with a real component of the
fabric. Then, in theRouting step, arouter establishes the connections between the

components. In the last step, the bitstream isrgéed:

2.5.2 CGRAs

Coarse-grained reconfigurable architectures (CGRJ®3)] use functional units with
higher bit-widths (e.g., ALUs with 8, 16 or 32 Bitsaving native support to word level
computing. CGRAs are an alternative to FPGAs faesavhere flexibility at the bit-level is
not necessary. By reducing flexibility, CGRAs afgeato outperform FPGAs on certain
characteristics.

For instance, due to the extreme flexibility anditlever increasing sizes, FPGAs have
time-consuming design cycles. Furthermore, the {eack phases are very complex as the
tools need to deal with a high volume of informatidcor large designs, the total time of the

mapping and placement and routing process canayo §feveral minutes to several hours,

! For instance, a Virtex-5 XC5VLX110 needs a file28f1 Mbits to configure the entire device [45].
13

depending on the effort of the algorithms. By udengier and fewer building blocks, the size
of the mapping problem reduces drastically, ahéscase with CGRAS.

CGRAs also have a more predictable clock frequeAtthough there have been efforts
on the development of asynchronous reconfiguralolgicl [48], most reconfigurable
architectures are synchronous. In the case of FP@wsclock frequency is dictated by the
maximum delay of the combinatory circuits betweegisters (i.e., critical path delay). This
delay is not only dependent of the characterigifdhe circuit design, but also dependent on
the ability of the mapping tools to reduce thishp&oarse-grained arrays usually have fixed

transfer rates between components, and a fixed¢tequency.

2.6 Dynamic Compilation

Compilers [49] are programs which translate souwode written in a programming
language into another computer language (in mosts;amachine language which can be
executed by a GPP). Compilation is knowrstic compilationor offline compilatiorwhen
it is performed prior to the execution of the pragt

Although the first job of a compiler is to trangatetween languages (or representations
of computations), most compilers also perform ti@msations and optimizations to the code
[50]. It is crucial that a compiler produces targetle that is functionally equivalent to the
source code, but the quality of a compiler is uguaieasured by how well it tunes the
program to specific requirements, such as executiore, or program size. As static
compilation is done before the program is releatte®lcompiler can use complex algorithms
to transform the program, bearing in mind thoseliregents.

Dynamic compilatiorpresents another approach for compilation. Stégiseocompilation
process are delayed until the execution of the naragfuntimé. Then, at runtime, those
compilation steps are performed, possibly usingtexial information not available offline
(e.g., specific information about the hardware \whis running the program, information
about the behavior of the program).

Java is a widely popular language [51] that retiesilynamic compilation for a number of
compilation steps. The program is distributed iniatermediate representation (the Java

% There is a trend to use fine-grained reconfigudbrics (such as FPGASs) to implement CGRAs [, 4
thus, creating an architectural layer easier td wéh.

14

bytecodel which is written in a virtual ISA (i.e., the 1S#f the Java Virtual Machine — JVM

[15]), and compilation addressing the real process@erformed during program execution
(known as JIT — Just In Time - compilation). Conmglduring runtime allows Java compilers
to take advantage of additional information avddaht runtime, as well as significantly
improves the performance of interpreted code.

Delaying the last part of compilation to runtimeaiso used to enhance portability. By
compiling to an intermediate representation (theaJaytecodes) theoretically every system
with a mechanism implementing the JVM can run theggam. This approach has already
been used in embedded systems to distribute the sqplication (e.g., software games)
across very different models of, e.g., smart phoAesther advantage of this approach is to
allow developers to use the same toolchain and lolewvent environment to develop
applications, instead of using a toolchain and igheompilers for each target system.

In traditional hardware/software co-design [52]e thecision of which parts of the
program are executed in the GPP and which partexaeuted to a coprocessor is performed
at design time, and that information is encoded the binary. An alternative approach is to
delay this decision until the execution of the parg. This way it is possible to benefit from
dynamic compilation features, such as enhancedalpbty and runtime adaptation. Herein,
we refer to this approach as Dynamic Hardware-SwofwPartitioning, DHSP, or simply
dynamic partitioning (see the problem formulatiorFigure 2.4) [13, 14, 53].

We consider at least four phases in dynamic pamiitg: Detection Translation,
IdentificationandReplacementThese phases do not necessarily need to be ereoytthis
order (e.g.Translationcan be performed either af@etectionor afterldentification.

Detectiondetermines which sections of the application aedwates to be moved to the
coprocessorTranslation transforms detected sequences of instructions anteequivalent
representation for the coprocesddentificationfinds, in the program execution, the sections
which were detected as candidates to be moved;llinReplacementrefers to the
mechanisms by which the execution flow moves from GPP to the coprocessor and vice-
versa.

Each one of these phases can implement its owwfsalgorithms and have different
levels of complexity. For instance, durif@etection an algorithm can, before deciding to
accept a section as candidate, estimate if thatcpkr section is worth moving to the
coprocessor, to reduce the number of candid@tesislationalgorithms can use intermediate

representations, or perform transformations andimipations over the sequence of

15

instructions using runtime information (e.g., Im@dular Inlining [54]).Identification can
use several heuristics to locate the detected segqsein the execution trace. The
Replacementan be done either by direct signals to the GPByaewriting the instruction

memory.

Problem formulation: Dynamic Hardware-Software Partitioning (DH SP)

Given a computational system composed by a GPPopaocessor, and an

U

application which executes on the GPP, dynamic iji@ming analyses th¢
application execution, decides which sections efapplication should be moved
to a coprocessor, and executes the application raocg to the decision, so that
the global execution of the application can be iayed according to some

established criteria (e.g., execution time, enaxgysumption).

Figure 2.4. Dynamic Hardware-Software Partitioningproblem formulation.

Note that the problem formulation in Figure 2.4tedathat deciding which computations
to move and executing the decision take place dysnogram execution. However, it does
not imply that all the necessary steps to perfoamivare-software partitioning must be done
at runtime. For instance, if the coprocessor iR&W, the dynamic partitioning system can
have a repository of pre-built RPU configuratiorsnd decides at runtime which
configurations to be used. Alternatively, a fulrtime system performs all tasks (e.g.,
detection, translation, identification, replacemeiring program execution. The problem
formulation leaves these possibilities open fofedé@nt implementations.

Being able to automatically take advantage of tbpracessors in a computing system
without resorting to recompilation is particulargppealing to embedded systems. It is
common for embedded systems to often rely on veegiic hardware modules to meet their
requirements. With this technique, it may becomsiesato take advantage of different
accelerators or to try different hardware solutioliscan also enable seamless integration
between applications and a family of RPUs which wary in some particular features, such

as local memory, and/or number of functional units.

16

2.7 Summary

This chapter briefly introduced a number of impottaoncepts that are used throughout
the thesis, from static to dynamic compilation, gibly considering hardware/software co-
design, and the use of reconfigurable processindgs uie.g., based on reconfigurable
hardware) connected to a general purpose processor.

When compared to ASICs, reconfigurable hardwaremisch more flexible, and
reconfigurable fabrics such as FPGAs can virtuatiglement the circuits of any ASIC. This
flexibility comes at a price though: due to the amfiguration overhead, reconfigurable
hardware can be slower, needs more area and dessifmae power [39]. On the other hand,
reconfigurable hardware offers the possibility odoerimenting hardware designs, and of
applying hardware acceleration to cases which wtiserwould be cost-prohibitive. Another
untapped potential of reconfigurable hardware & thcan adapt itself to each application,
e.g., during runtime.

Although reconfigurable hardware promises the fil#$i of accelerating many types of
applications, this promise remains partially unfidéi, mainly to difficulties related to the
available tools. By transparently migrating compota to coprocessors (e.g., RPUs) and
using information available only at runtime, we sdgamic partitioning as a possible
candidate to further bridge this gap.

We formulated the problem of dynamic partitioniagd identified four different phases in

dynamic partitioningDetection Translation IdentificationandReplacement

17

3 Related Work

This chapter introduces relevant work related to approach. We include approaches
based on traces, runtime reconfiguration, and pitranslation, and describe in detail three
relevant works in dynamic partitioning addressieganfigurable computing architectures.
These three works transparently move instructioemg executed in a General Purpose
Processor (GPP) to reconfigurable hardware, bearingnd embedded systems as target.

3.1 Binary Translation

Section 2.6 of Chapter 2 introduced dynamic contipiig using Java bytecodes as an
example of an intermediate representation. Thereases where a computing system, instead
of translatingnstructions of a virtual ISA (such as the Javauél Machine), uses the binary
code for a real microprocessor [55-57]. This isethbinary translation [18], and can be either
static or dynamic.

Approaches such as Paek et al. [58] perform lodgctien by doing static analysis of the
executable binary. In their work they decompile thele and analyze loop structures. They
focus on innermost loops, without branches and ehteyation count can be determined
statically. They also consider loop unrolling whidre iterations of both the inner and the
outer loop can be determined statically (only timmer loop is unrolled). The target
coprocessor is a data-flow oriented CGRA which sugpcontext pipelining. After loops are
detected, the binary is modified to include the @@Rapping and communication routines.

One example of dynamic binary translation is the@sBe microprocessor. The Crusoe
translate and executes binaries written in thel x8é ISA on the fly, to a microprocessor
which not only has different ISA, but a substafyidlifferent architecture [2%] The Crusoe
uses a Very Long Instruction Word (VLIW) processan architecture designed to take
advantage of Instruction Level Parallelism (ILPheTCrusoe is able to execute native x86

® Pentium microprocessors also uses binary translato translate instructions of the old x86 ISAthe
new ISA of the microprocessor [19].

19

code at a performance level similar to a supersgalacessor, while achieving a lower

thermal envelope.

3.2 RPU Architectures

As previous work has shown, if we move criticalgedo dedicated hardware units, we
can have significant performance improvements [T8jre have been many proposals on
accelerators using reconfigurable computing cors;egt well as a plethora of architecture
designs. Most well-known examples include Matri@]]SRAW [60], Adres [61], REMARC
[62], Morphosys [63], GARP [64], Chimaera [65], Bipnch [66], XPP [67] and Rapid [68].
Each one of these architectures proposes uniqugrésaand tries to address faster execution
and/or energy savings for a set of algorithms andéonain-specific applications. Currently,
there is a wide choice of hardware acceleratord, FIPGA-based reconfigurable fabrics are
an accessible technology to implement them. Howevsignificant hurdle for reconfigurable
architectures is the significant cost of mappirg phograms.

In a first phase, the portion of the program thatceites on the reconfigurable hardware
needs to be translated to the new architectursoine cases, the reconfigurable architecture
needs to be manually programmed, using an HDL lakguage, while in other cases, the
authors provide compilers specifically developedtf@ architecture, which either support an
already established language, or a new high-lgwetiBcation (e.g., as in MorphoSys [63]).
However, writing a good compiler is not trivial, cait is to be expected that compilers for
new and substantially different architectures acé as mature as compilers for well-
established architectures, which already have rgaays of development and tesfing

After the translation of program portions to theamfigurable architecture, the program
running on the GPP needs to call the custom haslwirese calls can be inserted in the
executable code either manually by a programmeautomatically by a compiler. There has
been a substantial effort in the development of mers which statically partition a program
into software and hardware parts, and automatiagdiyerate the HDL description of the

hardware parts [70, 71]. With an important roleghat process are the C-to-gates compilers,

* Projects like LLVM [69] can partially solve thisrgblem. LLVM is a compiler infrastructure which
provides front-ends to well-known languages, andtrabts the target architecture from most phases of
compilation, only introducing it when absolutelycessary.

20

which focus on synthesizing hardware modules, Wsuaitten in an HDL, from code written
in a subset of C [10, 11].

3.3 Dynamic Partitioning Approaches

The execution trace, the sequence of instructiceswged by a program, is the starting
point of many dynamic approaches. It is possiblexact information from traces which is
only available at runtime, such as the frequenctakén paths, and use that information to
generate more efficient code.

Bala et al. [72] developed Dynamo, a system whremgparently improves the code
executed by a GPP. Dynamo monitors the executidheohative instructions of a GPP and
uses runtime information to make native-to-nativ@nsformations. The working unit of
Dynamo is thdragment a dynamic version of the superblock [73]frAgmentis formed by a
sequence of executed basic blocks which do not jbagkward. By speculatively executing
fragments, Bala et al. improved the execution toheode which was compiled with default
compiler optimizations.

Gal et al. [74] used a trace-based compilationriegle for dynamically-typed languages
(e.g., JavaScript, Python). In such languages,types of expressions are not statically
defined and may vary during runtime. To cope witis,t compilers produce code capable of
resolving any kind of type combinations. The ohjextof their work is to reduce the
expressions to the types being actually used byafipdication at runtime, producing more
efficient code. They work over the granularity bétloop, based on the expectation that they
represent a big portion of the program executiod, that inside loops, the types of the values
are mostly invariant. Loops are detected and hou#ir the execution trace by monitoring
backward branches. They propose a structure ciifled tree which represents the hot-paths
of a loop.

Below we examine in detail three relevant approackhkich are closely related to the
work in this thesis: Warp [13], CCA [75] and DIM4]L

3.3.1 WARP

Lyseckyet al. propose the Warp Processor [13], a system whighteiments a full-online
dynamic partitioning approach. The system includes GPP, a fine-grained RPU
(Reconfigurable Processing Unit), and a dynamic pimap module. The dynamic mapping

module automatically detects critical loops on @P and maps the corresponding binary

21

code to the fine-grained reconfigurable, logic-lbagePU. Originally, the authors considered
a system which used a common hardcore GPP. In ®rmoswork they used the same
technique to improve the competitiveness of sofegrocessors in embedded systems [76].

The Warp architecture is composed by a GPP, withars¢ed buses for data and
instructions (Harvard architecture), a profiler, an-chip CAD (Computer-Aided-Design)
module, and a custom-made FPGA acting as the R&Lklie block diagram in Figure 3.1).

The profiler is non-intrusive — i.e., the profileloes not use instrumentation, which
changes the binary code and/or the processor eapdotintroduce instructions which gather
information — and is attached to the instructiors.btihe profiler is lightweight, and only
monitors the addresses of the executed instructions

The on-chip CAD Module is connected to the insinrctbus and receives information
from the profiler. It is responsible for translaithe loops detected by the profiler to the
FPGA. The CAD module is implemented as another G&fhing the mapping tools
developed by the authors of Warp.

ogoooooooonooooonooonoonnn

| Profiler |

P

B s

v

Warp-oriented
FPGA On-chip CAD
(W-FPGA) [$] Module

ooooonoooooooonn
guuggugooggouogoog

oy udyuddouuoooyg

Figure 3.1. Block Diagram for the WARP Processor @urce: [13]).

The custom FPGA, called Warp-Oriented FPGA (sear€i@.2), besides the configurable
logic, also includes a data-address generator (DARE loop control hardware (LCH),
three input-output registers, and a 32-bit mukipiccumulator (MAC). All memory accesses
from the FPGA are handled by the address genemtdrthe LCH is used to reduce the loop
overhead of critical kernels. A 32-bit MAC is indied as it is an operation used frequently
enough to justify dedicated hardware, instead oingriementation using the reconfigurable

logic.

22

DADG [b Reg0 | b Real | b Reg2 |
¥

= '
] 32-bit MAC]
¥ - v
Routing-oriented
Configurable Logic
Fabric

Figure 3.2. Block Diagram for the W-FPGA (source: 13]).

The reconfigurable logic of W-FPGA was designedhtimimize the time spent during
hardware synthesis, and has significant differerfrees the reconfigurable logic employed in
commonly available FPGAs. Instead of optimizing therformance of Look-Up Tables
(LUTS), e.g., by using LUTs with 5-6 inputs [77,]7&nd of Configurable Logic Blocks
(CLBs), e.g., by using clusters with 8 LUTs [7%ey focused on a simpler design which
allows faster mapping and placement. This resuttedh reconfigurable architecture which
uses 3-input/2-output LUTs and CLBs with 2 LUTsledéurthermore, the routing was also
simplified, and each CLB is connected to a switchirim which has 8 channels — 4 for the
adjacent nodes, and 4 for routing between evemraivitch matrix. As a result, the mapping,
placement and routing algorithms developed for VGRRare significantly simpler and faster
than the ones used on common FPGAs.

The Warp system maps hotspots consisting of inngtrrebort loops to W-FPGA. To
detect those loops, they take advantage of thetlfiattthere is a high correlation between
short backward branches in a program and the biegjrof a loop. Every time the profiler
detects a backward branch, the address is storadinall cache (16 entries of 8 bit values)
which monitors branch frequencies. If the valueadbranch frequency saturates, a shift is
performed to all values, to maintain a list of tela frequencies. When an address reaches a
certain threshold of saturations (the value ofsl@eferred in [76]), the address is considered
as the beginning of a critical loop.

After a loop is detected, the on-chip CAD Moduleads the binary code with the
instructions of the loop. It then transforms thedanstructions into hardware descriptions,
and the hardware descriptions into a bitstream. Qitstream is then loaded into the custom
FPGA (i.e., W-FPGA). There are, however, constsintthe implementation of each loop. A

23

loop may include accesses to the memory, but thest fiollow regular access patterns. In
addition, the number of iterations of the loop mustknown (however, the loop can terminate
at any iteration).

The on-chip CAD Module does extensive transfornmetito loop instructions before they
can be translated and run in the W-FPGA. The §itsp of the translation decompilation
The CAD tool converts each binary instruction af thop into an equivalent register transfer
representation, which is independent of the insitvacset. This representation is used to build
a control flow graph (CFG) and a data-flow graplF@), then merged into a Control/Data
Flow Graph (CDFG). The CDFG is used to apply stashdampiler optimizations and to
detect higher-level constructs such as loopsifasitements [80].

The next step i®artitioning (as represented in Figure 3.3). The kernel idetiby the
profiler is analyzed, and by using a simple pamntitng heuristic, which tries to maximize
speedup and reduce energy, the partitioning alguritlecides if the kernel should be

implemented in hardware.

Binary Decompilation
Updater

Partitioning
Logic Synthesis
Behavioral and

RT Synthesis :
: Technology Mapping

JIT FPGA
Compilation

Updated .".. P §
Bi“m']]

Figure 3.3. Binary to Hardware Translation Flow (sarce: [13]).

Placement

During Behavioral and Register-Transfer Synthedise CDFG is converted into a
hardware circuit description, which is in turn cented to anetlist format. TheJIT (Just-In
Time) FPGA Compilatiostep is similar to the traditional synthesis, magpand placement
and routing, albeit adapted to W-FPGA and usingornied tools and algorithms, optimized
for runtime utilization. InLogic Synthesjsthe hardware circuit is optimized. The compiler

creates a directed acyclic graph and applies aousivo-level logic minimization [81],

24

which traverses the logic network in a breath-fimstnner, applies logic minimization at each
node and uses a single expansion phase.

During Technology Mapping the compiler transforms, in a first-pass, thetlist
representation to match the 3-input/2-output LUTS\6FPGA, using a greedy hierarchical
graph-clustering algorithm. During a second-pass.compiler packs the LUTs into CLBs.

In the Placementtep, the compiler uses a greedy dependency-basgibpal algorithm
to place the CLB nodes onto the configurable logidially, the algorithm determines the
placement of the CLBs relatively to each other.eAfthat, the result is superimposed and
aligned.

Finally, the compiler uses a custom router [82,t83)erform theRouting The router uses
the same algorithm used in the Versatile Place Rodte's (VPR) tool [43, 84], with the
routing model cost of the W-FPGA. The algorithmoalé the overuse of routing resources
and illegal routes, and eliminates illegal routggdpeating routing iterations. The algorithm
is greedy and uses the adjusting cost to discousafgeting the same initial route during
subsequent iterations. After determining a valwbgl routing, the compiler builds the routing
conflict graph, having the W-FPGA technology inttcaunt. To resolve conflicts, it uses a
simple and greedy vertex coloring algorithm [85].

If the translation succeeds, the program is updayeithe Binary Updater (see Figure 3.3).
The original program is modified by introducing ratch instruction which will jump to code
responsible to initialize W-FPGA, instead of ex@ugitthe instructions of the loop. The code
for initializing the reconfigurable hardware inckglan enable signal to W-FPGA, code to
power-down the GPP into sleep mode and a jumpeganitruction immediately after the end
of the original software loop (skipping in this eathe execution of the loop instructions by
the GPP). When the W-FPGA finishes execution, fitdsean interrupt which wakes up the
processor and resumes its execution. The processbrW-FPGA execute in a mutually
exclusive mode, i.e., only one of them can be etheglat any given time. This simplifies
access to data, avoiding data coherency and censysissues. Furthermore, the authors refer
that they have not found a significant advantagearallel execution of both components for
the tested cases. They also consider that onlynglesapplication (and single-threaded) is
executing in the system.

For the experimental results with a hardcore CRBy tused two ARM7 processors, one
as the GPP and one for the CAD module. The mapgliggrithms needed, on average, 1.2
seconds to complete on a 40 MHz ARM7. They compapedup and energy reduction of

25

critical regions for 15 selected benchmarks relate@mbedded systems. The applications
considered are from NetBench [86], MediaBench [EBMBC [88], Powerstone [89] and
their own on-chip logic minimization tool, ROCM [B1

When compared with a common FPGA (Xilinx Virtex-EY-FPGA presents 1X5faster
clock frequencies and 25% less power. Overall, wbempared to the execution of the
benchmarks on an ARM7 at 100 MHz, the Warp Progesisows application speedups of
6.3x and energy reductions of 66%, on average. Thettiftel memory accesses as the main
bottleneck in the tested benchmarks.

For the experimental results with the soft-core (3APy used two MicroBlaze processors
[90], one as the GPP and one for the CAD moduleeyTbonsidered two FPGAs for
implementation of the Warp Processor, a Xilinx ¥l Pro clocked at 100 MHz, and a
Xilinx Spartan 3 clocked at 85 MHz. The mappingaaithms needed, on average, 11 seconds
to complete the mapping of a single kernel. Thepgared speedups and energy reductions
of critical regions for 6 selected benchmarks frBEIMBC [88] and Powerstone [89]. When
compared to the execution of the benchmarks inglesMicroBlaze at the same frequency as
the corresponding Warp Processor, they presentapsef 5.% and 5.% on average, at 100
MHz and 85 MHz, respectively. They note that thghker speedup of the Spartan3 is due to
the lower operating frequency of its base caseth®fsix benchmarks used, oreg\) had a
much higher speedup than the others. This happleeeause the critical kernel of theev
benchmark has intensive bit-manipulations which meyy efficiently on an FPGA. Without
considering this benchmark, the speedups are &8 3.&, on average, at 100 MHz and 85
MHz, respectively.

The energy consumption depended on the dynamidipaitg scenario. In a scenario
where a significant portion of the execution rumstiee FPGA, and the changes between the
GPP and the FPGA are infrequent, they present gmerctions of 65% and 55% for 100
MHz and 85 MHz, respectively. In a similar scenaliot where the changes are continuous,
they present energy reductions of 55% and 24% @&fr MMHz and 85 MHz, respectively.
They justify the lower performance on energy of ®gartan3 to its lower static power
dissipation. Since it is significantly lower thametstatic power dissipation of the Virtex II-
Pro, the dynamic power dissipation of the MicroRlawhich runs the CAD tools, represents
a much higher overhead in the case of the Spartan3.

Finally, the authors compared the Warp Processmguke MicroBlaze with existing
hardcore processors for embedded systems. For #énp Pfocessor, they only considered the

26

Spartan3 implementation, since they considered tti@tVirtex-1l Pro dissipates too much
power for embedded systems (e.g., it often exce@d¢d For the hardcore processors, they
considered a set of ARM processors (ARM7, ARM9, ARMand ARM11). For the same set
of benchmarks, the Warp Processor with a MicroBlaiz85 MHz had energy consumption

comparable to an ARM10 at 325 MHz but executea 1aSter on average.

3.3.2 CCA

The Configurable Compute Accelerator (CCA) [91Aispecial-purpose unit for executing
complex instructions. It was designed to be integgtan the pipeline of a GPP (see the block
diagram of Figure 3.4). However, instead of prauedi special instructions, it executes
arbitrary Data-Flow Graphs (DFGs). Also, insteaddotctly accessing the CCA through
programming, the unit itself has hardware supparbinary translation, which automatically
moves code from the instruction pipeline to CCA.

Generally, a CCA consists of a 2-D array of simfplectional units (FUs) interconnected
in a feed-forward manner. The implementation of @GACsuch as other RPUs, has a fixed
number of FUs and a fixed organization, but therajpens and connections between the FUs
are configurable. There can be many CCA implememtst depending on the target domain.
Using results from previous work efforts [92, 98[danformation from benchmark profiling,
the authors propose the CCA shown in Figure 3.h |91k a triangular shaped matrix of FUs,
where the FUs in any given row are homogeneous aliacthately, each row supports either
arithmetic and logic operations, or only logic cgterns. Between each two adjacent rows of
FUs, there is a crossbar for communication. Thiiqadar CCA presents some constraints: it
is limited to 4 inputs and 2 outputs, does not supmemory operations (e.g., load/stores),
and the output of an FU can only be used as thé wfpan FU in the adjacent row.

The objective of CCA is to execute small clustefsimple instructions as one macro-
instruction. Todetectwhich portions of code should be moved to CCA, ritiepping system
performssubgraph discoveryTo perform subgraph discovery, the instructioegechto be
transformed into a DFG representation first. Thédmwey run a subgraph discovery and
selection algorithm in the resulting DFG, which stilites clusters of the nodes using basic
instructions (e.g., ADD, XOR ...) with macro-insttions which can be executed in CCA.

The authors studied the use of the CCA of Figuse(®hich has depth 4) as well as other
CCAs [91]. They discovered that, for the selecteddnmarks, 99.47% of the graphs could fit
in a CCA with depth 7 or less. However, CCAs wilvérs depths are attractive because they

27

have lower latencies. They have also consideredrae@CA implementations with depth 4,
a case which can handle 82% of the graphs.

! cca Live Ins, CCA Config Cache Index 1
| SUBSYSTEM H
f CCA Control, Live Out Values H
1 1
1 1
1 CCA Control [
1 X >]
. Config 1 cca Generator '
1 Cache 1
1 []
1 1
1]
1 Config Cache Live In Instructions]
1 Index Values 1
--
cPy @® @ @ ®
BTAC
] ¥ CCAlndex Fecha
Config - —>»
Branch Cache Live In BTAC
Target Enlry Registers L >
A tal
@ 1 | R1,RE = ID »] EX » MEM »| WB
=

A4 L
Instruction

Cache

Figure 3.4. CCA-Enabled Processor Block Diagram (smce:[53]).

YYVY
XX XXX
e

- Add/Logical/Move
D Logical/Move

Output 1 Output 2

Figure 3.5. Example of a CCA Implementation (sourcg53]).

The CCA approach proposes two methods for subgdeggovery: (a) using an optimal
algorithm during compilation (static), and (b) wgia heuristic during instruction retirement,
in a trace cache (dynamic). The static method igleyed offline, using code profiling and an
optimal subgraph discovery algorithm developedHh®yduthors and based on previous work
[75, 94]. After detection of the graphs, the compihodifies the binary so that the clusters of

instructions which were chosen as good candidabesCICA graphs, i.e., clusters of

28

instructions that form a graph candidate to be radpfo CCA, can be easilgentified
Initially, the authors used two new ISA instrucgonCCA_STARTIjveout, height and
CCA_END to surround the cluster of instructionsalsubsequent work [53], they discarded
those two instructions and instead encapsulatedltiséer of instructions in a subroutine, and
called it with a special instruction (BRL’). Thethars refer that in case the binary needs to
run in a processor which does not have a CCA, pleeial instructions CCA_START and
CCA_END can be converted to NOPs, and the BRLTutston can interpreted as a normal
“branch and link”.

For the dynamidetectionapproach, the authors propose a simpler algorfmygraph
discovery [91]. Instead of doing an optimal seakghich is too time-consuming for runtime,
the algorithm uses a heuristic. Starting at a seetk, the graph grows upwards, towards the
parent nodes. Each time a parent node is addedethegraph is considered as a mapping
candidate. If adding a parent node violates CCAstramts, the node and its parents are
discarded. When transforming the binary instruditma graph, each operation is associated
with a ‘slack’ value. A lower slack value of an ogion represents a less critical operation to
the dependence height of the DFG. The slack vauased to choose between multiple
parents (lower slack values take priority). As thscovery of the graphs to map is done
bottom-up, starting at a single node and growingtlupugh its parents, the graphs will
resemble the upside-down triangular structure oACC

The heuristic is applied in the instructions ofp@aal trace cache, implemented using the
rePlay framework [95]. This particular trace cathealled aframe cache which is similar
to a trace cache, but is built upon predictionghenbranches of several basic blocks. While
the program runs, thieame cachéouilds theframe After theframeis built, if at any point
during execution any of the predictions happenbdownrong, therame is discarded. This
way, aframecan transparently cross basic block boundaries.

From the two approaches fdetectionthat authors initially considered the, i.e., stain
dynamic, they concluded that tliemme cacherequires a large amount of resources and
power, which caused dynamic subgraph discoverygusirirame cacheprohibitive for

embedded systems. In a subsequent work [53], fdcuse embedded processors, they

®> A framecan be seen as a large basic block, with one-point and one exit-point. Branches inside the
frame are converted to control flow assertions, @ndne these assertions is triggered, the entimené is
discarded.

29

propose a general architecture framework for camg@ny kind of CCA to a GPP, as well
as a dynamic partitioning approach where twetection phase is done offline, during
compilation.

Clark et al [91] propose three possibilities for the exeautistages where the
Replacementind Translation can be done: during instruction decoding, inside frame
cache, and during instruction retirement. They taded that the first case has low hardware
overhead, but as it is done in the decode stagaravseverely restricted by the stage latency.
Moreover, it does not allow the crossing of badark boundaries. The experimental results
show that, of the three considered cases, the daist is the approach with the worse
performance [91]. The second approach allows aebgierformance, but has a higher
hardware overhead [91]. A subsequent work [53] $esuon a combination of the third
approach with additional information fromdatectionphase done during static compilation.
As this case is the approach they considered teedmdution for embedded processors, we
will describe herein the mapping algorithm behine third case.

The mapping algorithm takes a sequence of instmstidetected as a complex instruction
for CCA, and generates the configuration bits @& torresponding subgraph which can be
obtained from this sequence of instructions. Figlifeshows how the algorithm translates a
sequence of instructions into a CCA configuratidohe BRL’ instruction in theSubgraph
Codebox signals a new subgraph. This subgraph wasqushyi detected by the compiler and
respects a number of characteristics: the numbeanpeits (orlive-ins) and outputs (olive-
out9 have predefined limits; all memory operationddashe graph are relative to temporary
values (i.e., spill code); the subgraphs may cbassc block boundaries by using downward
code motion during compilation.

The algorithm uses @urrent Producertable, updated at each step, and which maps for
each register and at that given time point, whithgfoduced the most recent definition of
that register. The algorithm reads each instruatibtihe subgraph code in sequence, one at a
time. For each instruction, it checks its inputrapels. If a given register in the input operand
of the instruction is not in th€urrent Producettable, it is added to the list of inputs (Step 1
and 3 in Figure 3.6). The placement of an instaucts determined by which FUs produce a
result used by that instruction. If an instructioeeds a result from a previous FU, the
placement of that instruction has to be, at lemsinediately below the FU with greatest

depth. For example, the instruction in Step 4 (Sgeare 3.6) depends on the result of FU B,

30

which is in the first row of CCA. Thus, the insttion has to be placed on the second row of
the CCA. The output operand of an instruction isked in theCurrent Producetable.

CCA does not support memory operations (i.e., ktadé operations), but has a special
table to support spill code elimination. It is gaateed by the compiler that any load/store in a
subgraph refers to a temporary value that will®tised outside of the subgraph. Every time
there is a store inside a subgraph (Step 2 in EigW8), the table stores the memory offset of
the store, as a way to identify the store, andRbewhich has produced the value to store.
When a load happens (Step 5 in Figure 3.6), therithgn uses the information in the table to
identify which FU has the needed value and coryagidate th€urrent Producetable.

Subgraph Code Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7
AND R3, R1, #-4 8T [8P+20]1, R3 SEXT R3, R2 AND R2, R3, 33 LD R3, [8P+20] OR R4, R2, R3 AND RO, R4, #3

LD R1,
1 sP sP sp sp sp sP SP
LD R2, [] Offset Node Offset Node Offset Node Offset Node Offset Node Offset Node Offset Node
. cca
BRL' SUBGRAPH Node 0 20 A 20 A 20 A 20 A 20 A 20 A
CMP RS, #1 Number
H

H
v 2

SUBGRAPH:
Current Current Current
AND R3, R1, #-4 Produce Produce Producer

ST 18Pe201, B3 | piier
SEXT R3, R2 Number
AND R2, R3, #3 H
1D R3, [8P4201
OR R4, R2, B3

AND RO, R4, #3
RET

Producer | jve-out

bW N 2 o

0
CCA Structure ! = Rz = h i
2
LIl — — — — —
oinninENERCTI LN e e e
E‘ E ECO0O0O0O | 00000 | ERO0000 | ERCOCO | ER0000 | EEO00d | Emoodo
Dot Dot oong [[B0 [[m[m]m [[]
IIHZ‘ oo oo oog oo [m| [[} [|m]m|
oo oo oo oo oo oo =[]

Figure 3.6. Mapping a subgraph into CCA (source: [8]): in the left are shown a sequence of instructics
representing a subgraph code (top) and a CCA struate (bottom); in the right side of thesubgraph code

are shown the steps performed by the mapping algdahim.

As the CCA architecture is not pre-determined ahuite time, thedetectionphase can
extract subgraphs which will not map to a partic@@€A. If a CCA does not have enough
resources (e.g., FUs) to implement a particulargseayiih, the mapping aborts and the
sequence of instructions execute in the GPP.

After a subgraph is successfully mapped to CAplacemenis done by updating the
entry of the corresponding branch on the BranclydtaAddress Cache (BTAC) represented
in Figure 3.4. Branches to this location will treggCCA execution.

For the experimental results, they present the digee obtained using 29 selected

benchmarks. The speedups were calculated as theofaxecution cycles without and with

31

CCA. They use benchmarks taken from SPECint200pd08 MediaBench [87] repositories,
and also include four encryption algorithms (3d#swfish, rijndael, and rc4).

The results, achieved by simulation, revealed aimamx speedup of about X6and an
average speedup of about®,.2ith a CCA with 4 levels and using dynandetectionand
translation [91]. When using the mixed stataetectiodynamic translation of the most
recent approach, they could improve the averag®npeance to 1.68, 1.91x and 2.79 for
the SPECIint2000, MediaBench, and encryption bendksnaespectively, while using less
hardware resources (in this case they do not esfeaime cachg[53].

When comparing the first two approaches used faplydiscovery, the authors concluded
that the statidetectionwas consistently better than dynardietection This was expected,
since the statidetectionuses an optimal algorithm instead of a heuridowever, the
differences in the results obtained between the approaches were minimal — both
approaches achieve an average speedup betweeradd?1.¥. The authors explain the
similar results by referring that they used anrindion-Set Architecture (ISA) which has few
registers (16). This increases the number of menopgrations, and since CCA does not
support them, it strongly limited the amount of gartation which could be done in a single
graph, as well as the exploration space of thécsilatectionmethod. In the third approach,
they exclusively used statitetectionand added support for spill code elimination, wahic
contributed to the increase in the average speeflupe SPECIint2000 and MediaBench
benchmarks [53]. Furthermore, the results showat @CAs with depths greater than 4 did

not provide significant gains in performance [91].

3.3.3 DIM

Beck et al. [14] propose the Dynamic Instruction Merging (DINBchnique, a binary
translation method to transparently move basickddmom a general purpose MIPS processor
to an RPU consisting of a coarse-grained recordiglerarray (CGRA). They tightly couple
the CGRA to the processor: the CGRA works as aitiaddl functional unit in the execution
stage of the pipelining. They envision this arattitee as a solution for accelerating
embedded systems that need to execute many diffarets of computations.

The authors expect the DIM architecture to runhat game frequency as the processor.
DIM (see Figure 3.7) has direct access to the oisitef the register file of the processor
through a set of buses and multiplexers. In th@@sed CGRA, the processing elements are
organized as a 2-D array (matrix) and only procegselements in adjacent rows

32

communicate directly. Each column of the matrix baky one type of element, existing three

broad groups for the types of elements of the CGR#e first group is composed of simple

logic/arithmetic instructions which can be executedess than a single clock-cycle. The

second group includes memory load and store opesatMemory operations are assumed to
have a delay equal to a cache-hit. If a cache-ousars, the FU stops until it is resolved. The
third group is for complex elements which can takseral clock-cycles to execute (e.qg.,
multipliers). Although the authors refer in a pws work that the DIM supports loads and
stores [14], in a posterior work [97] they show teo architecture for DIM where the array

has no external accesses and is composed by orginacessing elements, such as ALUS,
shifters and multipliers.

Output Context Group 1 Group 2 Group3 Configuration
1) Add r7, r5, 6 — Bits.
2) Add r8, r7, r6) ™ o
3)Add r9, r8, 6 T Fag & =
4)Addr1,r2,r7| (b) S 3
5) Add r4, r2, 17 8 () =
6)Lw r6, 8 == E T =
7)Lw 5,4 ' E i %
8) Add r1, 4 =
O i

\6 \ =

(c) z Te .' L R

¥ Cycle 1
Multiplier

kS

Input Context

B
Parallel Execution

Figure 3.7. DIM Block Architecture and Configuration Example (source: [14]).

Figure 3.8 shows an overview of tReplacemensystem used in the DIM architecture.
The instructions are read simultaneously by thegssor and by the Binary Translation Unit
(BT). They use a mixedetectionidentification-translationphase: the first instruction after
any branch is the beginning of a basic block, anauitomatically considered for execution in
the CGRA. Thus, after a branch, the binary traisiadbardware starts translating instructions
to DIM. The translation is done instruction-by-ingttion, similarly to the translation in CCA
(see previous section). It continues until it firsinstruction not supported by DIM (e.g., a
floating-point operation) or another branch. If thi@ary translator mapped a sequence of
instructions with more than three instructions feeshold chosen by the authors) the
translation is stored in the Reconfiguration Caahé is indexed by the value of the Program
Counter (PC) of the first instruction of the basiock.

33

1st time Next times

P T R T Y TR YT YT TRy

H .

s S22/ H o
: 7/ Save § Rec. Cache oa
i :

i Processor ; Translate [

: v

H
% a4
i

H
- " A .
¢ Execute . »

PC=0x50 PC=0x50 PC=0x50

.

Figure 3.8. Dynamic translation in the DIM Architecture (source: [14]).

During normal execution of the processor, the agkled the PC is read by the dynamic
partitioning hardware while it is in the first seagf the processor pipelining. If the PC
corresponds to an entry in the reconfiguration ea€lM is reconfigured and executed in the
fourth stage of the pipelining (Execution) insteddexecuting the instructions in the GPP. If
DIM is not reconfigured at that time, the processtalls until the reconfiguration is
completed.

As previously referred, DIM uses an instructionibgtruction translation algorithm
similar to the one used in CCA. Duritiganslation the algorithm keeps a number of tables
where it stores information about the routing cé thperands and the configurations of the
processing elements.

For each incoming instruction, the first task is t¢beck read-after-write (RAW)
dependences usingdependence tahld his table is built with the help of the arragtarchy
of DIM. During translation, the last write to a stgr from an FU is known. With this
information, the instruction is allocated and tfependence tablgpdated. Finally, the routing
is determined and configured.

The DIM authors claim that with this algorithm the&an use larger windows for
instructions, and consequently increase the ILPenwbompared to the techniques used in
superscalar processors [98]. It is also referratittie algorithm supports functional units with
different delays and the handling of false depenigsn

The simplestdetectionapproach used in DIM exploits exclusively the lidBide basic
blocks. As this ILP is limited, the DIM authors pase a speculative version of the DIM,
which can cross the boundaries of up to three Hasicks. The speculative version uses a
bimodal branch predictor [99] to decide if a givananch should be added to a certain DIM

configuration. Each PC address is associated with ene DIM configuration. Since each

34

configuration only has one entry point, but can éhaeveral exit points (basic block

branches), it can be considered as similar to tiperblock [73]. When the branch predictor

reaches a given maximum value, the instructionslénthat branch are added to the current
DIM configuration. If a given speculation missepr@defined number of times, the entire
configuration is flushed out.

The DIM authors conclude that the performance o$ #ypproach, with or without
speculation, is highly dependent of the numbemnsfructions of each basic block. The more
instructions a basic block has, the more instrastioan be mapped to the CGRA and the
higher the performance achieved can be.

For the experimental results, they use as GPP ihariips [100], a processor based on a
MIPS R3000, and estimated DIM power dissipation areh assuming a 0.18n CMOS
process. They present the speedups for MiBench] [A@ichmarks, a suite of benchmarks
specific for embedded computing. They have usedbdechmarks that the architecture
supported (e.g., benchmarks without representétating-point computations).

They claim an average speedup of2ahd an energy reduction of £.J14] when using a
CGRA with 48 rows and speculation enabled. Withspgculation, they obtain an average
speedup of aboutx2 According to the DIM authors, the speedup comesnfexecuting
operations in parallel, and executing a small secei€e.g., 2, 3) of simple operations (e.g.,
arithmetical and logical) in a single clock-cyclhey refer that, although the average power
dissipation per clock cycle with and without DIM sgmilar, the DIM version needs fewer

cycles to execute and consequently, consumesnesgye

3.3.4 Overview

All three approaches presented before, i.e., Wa8p, [CCA [91], and DIM [14], show
speedups for a number of benchmarks. Those apmeadnsidering power dissipation also
show energy reductions when using the RPU couplddet GPP vs. the use of the GPP alone.
The three efforts approach dynamic partitioningdifierent ways. Table 3.1 summarizes a
number of characteristics of those approaches.

Warp is the only approach of the three which uses-grained reconfigurable hardware
(W-FPGA) as the target RPU for dynamic partitioni@pmparing to a coarse-grained, it
trades-off higher flexibility in the circuitry thatan be implemented with higher overhead. It
is also the approach which needs a more compléiipaing stage.

35

Characteristics

Warp [13, 76]

CCA [53, 91] DIM [14,97]

Partitioning Approach

Coupling

Granularity

Partitioning

Size of the segment of
code to be mapped in
a configuration

Benchmarks

Target Domain

GPP

Size of the RPU

Average Speedup

Average Energy
Reduction

Identify and decompile
original loops,
dynamically translate
loops to the RPU

RPU loosely coupled to
the GPP, both share
instruction and data

memory

Fine-grained RPU (LUTSs,
MAC)

Monitors addresses of
executed instructions for
short backward branches,
representing inner loops

Inner loops with few tens
of lines of code

NetBench, MediaBench,
EEMBC, Powerstone, in-
house tool ROCM

General Embedded
systems

1) ARM7 at 100MHz
2) MicroBlaze at 85MHz

14.2 mnf with 180 nm
library (~852,000 gates)

1) 6.3
2) 5.9

1) 66%
2) 24% - 55%

of instructions across basic

Identify as many
instructions as possible,
inside one or more basic
blocks, to be mapped to

DIM

Identify segments of
instructions which can be
executed as macro-
instructions on the CCA

RPU tightly coupled to the RPU tightly coupled to the
GPP, RPU integrated in GPP, RPU integrated in
the GPP pipeline the GPP pipeline

Coarse-grained RPU
(ALUs)

Coarse-grained RPU
(ALUSs)

Detects subgraphs formed
by clusters of instructions: Starting at any instruction
1) dynamically, inside a after a branch and
frame cache or 2) considering a limited
statically, at compilation number (3) of basic blocks
time

1) a couple to a dozen of
From a couple to a dozen instructions inside a basic
block or

blocks 2) across up to three basic

blocks with speculation

MediaBench, SPECint,

; . MiBench suite
encryption algorithms

General Embedded and General Embedded and
General Purpose Systems General Purpose Systems

1) 4-issue superscalar
ARM
] Minimips soft-core based
2) in-order 5-stage on the MIPS R3000
pipelined ARM (ARM-
926EJ)

0.61 mniwith 130 nm > 1 million gates

library

1) 1.2 1) 2.0x

2) 2.% 2) 2.5«
n.a. 2) 1.7

Table 3.1. Summary of characteristics for the threeepresentative approaches: Warp, CCA, and DIM.

Both CCA and DIM are integrated in the pipelinetled GPP, while W-FPGA works as a
coprocessor. In the case of the Warp Processom#épped regions of code have to execute
for a longer time to compensate for the overheadadt, the Warp Processor is, among the

36

three, the only approach which considers entiredpavhile CCA and DIM present speedups
by only exploiting ILP using a small number of lwablocks and without considering entire

loops. The Warp Processor also presents the higipestdups, not only because it moves
entire loops to hardware, but also because thegiamed structure can dramatically

accelerate applications with intensive bit manipafa

However, Warp does not consider loop pipelinintgeanique which has been extensively
studied [48, 67, 102-104] and proven to be capabkubstantial increases in performance.
The technique has been studied in the context dREX[61] and static binary compilation
[58], although to the best of our knowledge, loapepning in the context of a dynamic
partitioning system is still unaddressed.

Both CCA and DIM use reconfigurable hardware asadditional functional unit of the
GPP. Being tightly coupled to the GPP gives actedke processor’'s registers and to the
exploration of fine-grained instruction parallelisthlowever, this also means that the
reconfigurable architecture has to work very clpseith the processor architecture and the
RPU and the GPP have to be designed togethertightyy coupling also places the RPU in
the critical path of the processor, and limits din@ount of work the RPU can do.

All the three approaches have embedded applicatisrene of their targets. They couple
the RPU to GPPs commonly found in embedded devied,they use embedded-related
benchmarks. Unfortunately, the overlapping among benchmarks used in the three
approaches is very small. Among nine differentesudf benchmarks, only one (MediaBench)
was used by more than one approach (Warp and CCA).

Warp and CCA can easily map portions of code oatbisic block boundaries, but DIM
does this in a very limited fashion. Both Warp &1dA analyze the code before translating it
— as it is executed, in the first case, or in adreache [95] / statically by a compiler in the
second case. DIM directly translates the instrmstido the hardware without previous
analysis of the code. This approach is much ligimteromparison, but makes crossing basic
blocks boundaries more difficult.

The detection of the critical kernels depends am stze of the RPU. Since the Warp
Processor addresses entire loops, it detects bagkwanches, which usually identify inner
loops. CCA looks for multiple partitioning unitsside the graph constructed from frequently
executed portions of code. DIM does not have a ar@sm for detection of critical kernels: it

tries to map the currently executing instructiomsrg time a branch occurs.

37

3.4 Summary

This chapter briefly described the more relevantkea@oncerning dynamic partitioning.
We gave examples of binary translation, RPU archute and dynamic partitioning, as well
as a special attention to three approaches closklied to our work: Warp, CCA, and DIM.
The results from the three approaches reveal tremitsh provide a useful guide to our own
research work. They focus on embedded systems wiseh RISC processors as GPPs
coupled to an RPU. RPUs based on coarse-graineafrgarable logic showed a trade-off
between potential for speedup and partitioning loead. These works also show that there
are many options in a continuum between fully stapproaches and fully dynamic
approaches, worth of being explored.

It became clear that going beyond the basic blaskasignificant impact. Previous work
has shown that the size of program sections todeethcan become greatly constrained if we
do not cross basic block boundaries [92]. Memorerapons are another significant
constraint, and we should consider memory operatas supported RPU operations, thus
enabling the mapping of candidate sections with orgraccesses.

In general, all approaches could achieve speedups@ %, on average. The highest
performance improvement is reported in the workysfecky et al. [13], where they achieved
speedups aroundx6with mapping of bit-level operations. However, thpplications with

intensive bit-manipulation operations are limitedsery specific fields (e.g., encryption).

38

4 The Megablock

The ultimate goal of our approach is to move segeemf instructions from the General
Purpose Processor (GPP) to a Reconfigurable Priogesit (RPU) during runtime. The
sequences of instructions (code) to be moved (sngall groups of instructions, individual
basic blocks, entire loops) is fundamental for dficient Dynamic Hardware-Software
Partitioning (DHSP) method (herein referred as dyiegartitioning). The units of code to be
moved from the GPP to an RPU influence the RPU iatare, the potential for
improvement, and the algorithms that can be appliethg the entire process.

We focus our attention to code units considerirgp$) as they are commonly the ones
which contribute more to the overall execution timfethe application. Specifically, this
chapter presents the repetitive pattern of codegsed in this thesis, the Megablock, and
explains why it is well-suited for moving sequehtiade to RPUs with a parallel computing
model. We present an algorithm for detecting Megelkd, an Intermediate Representation

(IR), and source-to-source transformations whicibénthe formation of better Megablocks.

4.1 Motivation

The impact of a coprocessor in the overall exeautime of a program is related to the
portion of program execution moved from the GPRBhto coprocessor. Consider a metric for
measuring program execution, such as the numbeoodk cycles (also known as latency) in
a processor with fixed clock frequency. When usthypamic partitioning methods, one
expects to move parts of the execution from the @P#e coprocessor. We use the term
coverageto refer to the portion of GPP execution that W#l replaced by execution in an
RPU, over the total execution when the program antg in the GPP (see Equation (4.1)).

Let us consider a hardware accelerator which cgorawe the execution time of the
sequential code moved from the GPP to the coprocebg a factor represented as
Speedup,. The overall application speedup one can achieeeprding to a particular
coverage, is given by Equation (4.2). The speedugngby this equation is an upper bound
which does not take into account any overhead, (@gamunication overhead).

39

Figure 4.1a) shows overall application speedupsrdorg to the percentage of execution
that is moved to the coprocessor for several vabfeSpeedup,. Figure 4.1b) presents
another view of the same data, by showing the faiwveen Speedgpra and Speedup,
according to coverage. A zero percent coveragessponds to a speedup of, Wwhile 100%
coverage corresponds to a speedup equal to Spgeddpth figures show that the overall
application speedup is limited by the amount ofcexien we move to the coprocessor
(Amdahl’s law [105]). If we consider that Speedups a very high value (e.qg., infinite), we
obtain Equation (4.3). According to this equatwith 50% coverage we can never attain a
speedup great thax2to attain an overall>3speedup we need more than 66.6%, to attain an
overall 4 speedup we need more than 75% of coverage, etas, TWhen moving
computation from a GPP, it is very important to molarge portions of the program

execution; otherwise the impact of the coprocesstre overall speedup is limited.

Executionygyeq

) _ x 100
overage Executionr,y -
Speed ;
peeaupoyeran =
~Coverage (4.2)
(1 — Coverage) + Speedupyw

1
(1 — Coverage)

Speedupoyerai-Max = (4.3)

High coverage is not the only condition for havangignificant performance impact when
moving computation from the GPP. For instance, dbeerage can be distributed among
many small trace segments, which may produce loprorements when communication
overhead is also considered. However, high coverage necessary condition to achieve
noticeable speedups (e.g., coverage of more th#ni$0eeded to achieve a speedup>)f 2

Approaches which move a set of instructions [53kioigle basic blocks [14] can have
high coverage. In this case, the impact is limibgdwhat the coprocessor can do with that
sequence of instructions. For instance, the spe@wen moving a single basic block is
mostly determined by its ILP, which is usually véingited [97].

An alternative to the case where a simple sequefcastructions is moved to the
coprocessor, is to move entire loops [13]. Loopsticoously repeat a similar sequence of
instructions, increasing the potential for improwsns when compared with a simple

40

sequence. A loop usually represents a consideladpger portion of uninterrupted execution

than, for instance, a single basic block.

6 100% ﬁ
90% ,
5 . 2 80% // -
o
4 § 70% // // -
a 10x 8 60% — —_—2
3 d
3 ; L e
g 3 —— 8X 50% / —— — X
& / 6x S 40% 6x
2 5 /
W — | &
__ 0w
1 — DX & 20% 10x
10% |
0 0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 20% 40% 60% 80% 100%

Coverage Coverage
a) b)

Figure 4.1. a) Upper bound for overall applicationspeedup as a function of the coverage, and b) ratio

between Speedug.erai and Speedup,, as a function of the coverage.

Hardware implementing loops is usually coupledht® GPP according to the schemes in
Figure 2.3a), b) and c). Moving computations awaynfthe GPP enables coprocessors with
more complex behavior, but increases communicati@rhead. However, as loops tend to
execute for a longer time than a single sequenaestiuctions, they have a higher possibility
to amortize the communication overhead. As loopsegely have a higher potential for
improvement than single sequences of instructil@shave chosen to explore a loop-based
execution unit.

Figure 4.2 depicts the Control Flow Graph (CFG) dopossible inner loop. Each block
can represent a unit of execution, such as a bésuk. In this figure, after execution of block
A, the execution can either continue to block Bbtwck C. After block B or block C, the
execution continues to block D. For each additidoap iteration the executions goes back to
block A, otherwise the loop ends. The CFG represéhé static behavior of the loop.
However, without information about the dynamic bebeaof the execution, we do not know
with which frequency the two paths are taken, @rparticular path is taken at all.

The Warp Processor [13] implements loop-based dimagartitioning. It detects small
inner loops by analyzing short backward branchesratrieves the static description of the
loop directly from the instruction memory. Stru@srsuch as the HyperBlock [106] also
consider the static structure of a loop, but inekjdor each path, the number of times it was

taken until a certain execution point.

41

N
N\

D
Loop
Exit

Figure 4.2. Example of the CFG of an inner loop.

The Dynamo system [72] takes another approacheddsbf starting from the static
structure of the code, it builds a dynamic struetcailled gragment which is inspired by the
superblock [73]. The runtime formation ofragmentstarts when a basic block does not end
with a backward branch (i.e., there is a forwardnich, or the branch is not taken). A
fragmentends when there is a backward branch at a braggaimt. Fragments represent a
single execution path composed of several basickbldPrevious work which considers the
speculatively execution dfagmentg(i.e., assumes all the basic blocks iineymentexecute,
and uses roll-back mechanisms when the assumeditioosdare not met), showed
improvements equivalent to the ones achieved wbampiling with optimization flag —O4 of
gcc[72].

The ideas behind the HyperBlock [106] , the sumetbl[73] and Dynamo [72] present
good starting points for a dynamic loop structufecl can be used to move code from a GPP
to an RPU. We were very intrigued with the potdntta improvement presented by the
single path approach of the work done in the Dynaystem. Also, we consider that a
repeatable execution path in sequential code camteeesting for a parallel computing
model, and this has led us to focus on a loop &trec named as Megablock, with these
characteristics.

4.2 Megablock Definition

The Megablock represents repetitive sequencessbfuctions in an execution trace. It
typically represents a repetitive path formed dyinantime. As with Dynamo’s fragment, the

Megablock also considers an execution path. Howeter Megablock is strictly a loop

42

structure, which has a unit (the loop iteration)ickhrepeats several times in sequence. The
Megablock is also agnostic to the structure ofdibde and neither looks for jump instructions
nor distinguishes between backward, forward orkerigumps. Unlike the broader definition
of a loop in Figure 4.2, the Megablock is a loopickhcontinuously repeats theame
sequence of instructions. A Megablock representomtiguous repeating pattern in the
execution trace, and a single execution of theepattepresents a single Megablock iteration.

A definition of a Megablock is presented below.

Megablock Definition

Consider a statically defined progradmwhich is formed by the sequence
of machine instructiondiii, ... k. Each execution of the prograrm
generates a sequende called a trace, formed with possibly repedted
instructions fromP. Consider S a sequence of instructions with sizel
present inT (beingm the numbewof instructions). For instanc@sigi;] and
[igizlig] are two specific three-instruction sequences. Agaibdock is a
contiguous subsequence df formed by a repeatable sequengge

represented bys{n}, beingn > 1 the number of times the sequert

D

repeats. E.g., i5=[isisi7] andS{3} is a Megablock found i means that

[isi6l7 isigi7 Isigi7] IS @ contiguous subsequencdin

Megablocks have a simplified control-flow, wheree tkame sequence of instructions
executes in loop. In any point of the Megablockréhean be guard instructions (referred
herein asexit point3, which test a condition to determine if the exemuin the Megablock
should continue. The conditions of all exit poiate tested in all iterations of the loop. If any
of the conditions fails, it signals the end of thescution of the Megablock. Consider Figure
4.3a), which contains the C code for the implementaof a max function. The function
contains dor loop with anif structure, and forms a CFG similar to the oneigufe 4.2. A
possible Megablock is formed during execution & ittex function when the same path of
the ‘if” is taken for several consecutive iterations (eayery iteration after finding the
maximum value of the array).

Figure 4.3b) shows the sequence of MicroBlaze E&lembly instructions that form the
Megablock when the current value of the array vgeloor equal than the maximum value up

to that point (i.e., the expressiofif'> mx " returns false). This Megablock contains two

43

exit points, represented by the branch instructafittie sequence (the fourth and the seventh
instructions). The execution in the Megablock ammdis as long as the condition of the fourth
instruction is met (corresponds to testing if therent value of the array is lower or equal
than the maximum value up to that point), as welthee condition of the seventh instruction

(which tests the induction variable of the loop).

unsigned int max(unsigned int* v,
int n) { 1. 0x180 bslli r3, r4, 1026
unsigned int mx=0, i; 2.0x184 Iw r3, 15, r3
for (i=0; i<n; i++) { 3.0x188 cmp rl8, r3, r7
if (v[i] > mx) { 4. 0x18C bhgeid r18, 12
mx = V[i]; 5. 0x190 addik r4, r4, 1
} 6. 0x198 rsubk r18, r4, r6
} 7. 0x19C bnei r18, -28
return mx;

}

Figure 4.3. a) C code for anax function and b) the MicroBlaze assembly code for &egablock

representing one of the possible execution paths.

4.3 Megablock Detection

The problem of detecting a Megablock is similarao instance of the problem of
detecting repeated substrings, exx, with x being a substring containing one or more
elements. This is also known sguares or tandem repeats [107]. In our case, subskirsy
equivalent to the previous sequence of instructi®ifhis can be achieved by representing
each instruction by a symbol), and represents@esiteration of a loop. Although we want to
find patterns with many repetitions (a square syricepresents only two repetitions), we
observed that if a sequence of instructions fornsgjuare, it is likely that mone elements
will follow (e.g., xxxx..). The detection method considers that two repestare enough to
declare the detection of a Megablock.

Our Megablock detection approach has been focusedchemes bearing in mind its
suitability for runtime, either in the context ofapping or moving computations at runtime.
There are algorithms which can find all tandem agpé& Of logn + 2), wheren is the length
of the string ana is the size of the output [108]. Another examgleéhie use of linear time

algorithms which uses suffix trees [109]. Howeubgse algorithms are not suited to runtime

44

Megablock detection. Algorithms which use suffirds need to preprocess the input string.
Furthermore, as the stream of instructions is geadrat a constant rate, the algorithm should
have a constant processing time for each inpugetable to keep up with the GPP.

Figure 4.4 presents the algorithm developed to rtieete requirements. The algorithm
definesa priori the maximum size of the substrirdi.e., the number of pattern elements) in

the squares.

M is maximum substring size
MatchingFifo has size M

CounterArray has size M, initialized to zero

processElement(PatternElement)
for index1toM

i f PatternElement equals MatchingFifoli ndex]
i f CounterArray[i ndex] < index
CounterArray[i ndex]++;
el se
CounterArray[i ndex]=0;

for index1toM
i f CounterArray[i ndex] equals i ndex
signal match for square with substrings

of size i ndex

insert PatternElement in MatchingFifo

Figure 4.4. Algorithm for detection of squares, ugo a maximum size M.

It uses M counters, one for each substring sinenft to M, and &IFO queue with read
access to any index, which stores the previousdavhehts. When a new element arrives, it is
compared with the M previous elements. The positiothe FIFO of the previous element
being compared determines the size of the substamy detected. If there is a match, the
counter is incremented until the size of the suhgtrif there is a mismatch, the counter is
reset to zero. For each counter, if there are asyroansecutive matches as the size of the
corresponding substring, a square with substrifidgsad size is detected. Finally, the element
is inserted in th&IFO. When theFIFO is full, the oldest value is discarded.

45

According to the algorithm, when processing a €ngput, there can exist 1 M matches
for squares with different substring sizes. Fotanse, by feeding the patteaaaaaato the
algorithm, after processing the last element it detect 3 matches, for squares with substring
sizes 14), 2 (@a) and 3 &aa), respectively.

We use an arbiter to select the most relevant m&whinstance, to consider only inner
loops, the priority is given to the match with thmallest substring size; to detect patterns
with unrolled inner loops, but only when they appeeide outer loops (e.gaabaah), the
priority is given to the match with the highest suimg size, but only if there is no match of a
lower substring size simultaneously in the currentl in the previous set of matches, to
prevent unrolling in cases suchaemaa

We consider four adjustable parameters when impiénge a Megablock Detector:
maximum pattern sizéype of pattern unjtunrolling of inner loopsandexecuted instructions
threshold In the algorithm we limit priori the maximum number of pattern elements of the
substrings that can be detected. teximum pattern sizefers to this size.

In the previous section, we indicated that the sirgsx is formed by one or more
elements, and that is equivalent to sequen&of the Megablock definition. Although we
defined the elements & (the contiguous repeated sequence) as singleuatisins, the
elements of substringcan be coarser than instructions, to reduce ttextien problem size.
We refer to the kind of element used for detec{ieny., instruction) as thgype of pattern
unit.

Different kinds of units can be used for detectias Jong as the pattern unit represents a
contiguous subsequence of instructiond ifwith T being the sequence of instructions that
form the execution trace). For instance, in thissikh we consider instructions, basic blocks
and fragments as possible detection units, as falhem represent a valid contiguous
subsequence (or substrings) in the execution tkaoasider the example in pseudo-code in
Figure 4.5. The Megablock ‘z’ can be formed by itrstructions with addresses 10, 11, 30, 31
and 20; by the basic blocks starting with addre4€es80 and 20; or by the fragments B and
C.

According to the rules of the arbiter that receitles matches that happen each clock
cycle, it can give priority to smaller or largertigans (Megablocks with less or more pattern
elements). When priority is given to larger patsgenve consider thatnrolling of inner loops
is active. Otherwise, if priority is given to snallpatternsunrolling of inner loopsis not

active.

46

Source Code B Execution Trace
A=0; B=0; 01: A=0
while(A<5) { 02: B=0
A=A+l 03: JUMP TO 20 A
if(A<3) {
B=B+1" [20: IF A<5, JUMP TO 10 |
} 10: A=A+1 [
} 11: IF A<3, JUMP TO 30
30: B=B+1 B,
31: JUMP TO 20
Assembly Code .
i[20: IF A<5, JUMP TO 10 cl |
01: A=0 10: A=A+1 M
8;1 B=0 020 11: IF A<3, JUMP TO 30 B
: JUMP T —==
10: A=A+l 30: B=B+1 z

11: IF A<3, JUMP TO 30
12: IF A<5, JUMP TO 10
13: END

10: A=A+1]
gg g::gii JUMPTO 10 11: IF A<3, JUMP TO 30 Dy
31: JUMP TO 20 12: IF A<5, JUMP TO 10 L

10: A=A+1]

SR " 11: IF A<3, JUMP TO 30 D|Yy
E P | [12:1F A<5, JUMP TO 10 | L
basic block fragment 10: A=A+1

11: IF A<3, JUMP TO 30
[12:IF A<5, JUMP TO 10
[13:END \

[]

Megablock

‘ E

GO DRNDWWWNNNNNRERRERREOOOO >
NN NOMNMNMNNMNMNMNMNNMNNMNNRRRRPRR,OOOOO !

Figure 4.5. Program execution partitioning accordimg to basic blocks, fragments, and Megablocks.

When a Megablock is detected, we are able to daterhow many instructions the GPP
executes until the Megablock exits. Tlexecuted instructions thresholefers to the
minimum number of instructions that should be exedlby the GPP (when a Megablock is
detected) so that the Megablock is considerednigie@mentation. If the number of executed

instructions falls below thexecuted instructions threshdlie Megablock is ignored.

4.4 Megablock Intermediate Representation

Intermediate Representations (IRs) are widely usecbmpilation as a way to express
code in a more convenient way for transformationapping, and code generation [49]. The
Megablocks are formed from instructions extracteanfthe execution trace of the processor
used in the target system. Those instructions eatrdmnslated to a format similar tioree-
address cod49], an intermediate format commonly used whegatang GPPs. However,
this format is ill-suited for computing models withtrinsic support to high parallelism
degrees, as is usually the case with RPUs. Instéddanslated to dhree-address code
format, the instructions of the Megablock are tfamaed into a graph representation, more

akin to data-flow representations.

a7

The proposed intermediate representation contamsdata structures: a directed graph
structure, which contains nodes and connectionesepting the relationship between data
and operations, as well as additional informatiochsas exit points; and a table which maps,
for each output of the Megablock, which operatiorteg the last value, according to the
original sequence of instructions.

The graph representation presented herein corftaungkinds of nodesOperation Livein,
Constantand Exit. It uses five types of connectiondata control, liveout feedbackand
exitAddress Figure 4.6 summarizes the available node typessthe possible connections

between nodes.

data
control data
data Operation liveout Constant +— liveout
feedback exitAddress
exitAddress
a) b)
B data control
feedback —» Livein liveout liveout —m Exit
exitAddress
c) d)

Figure 4.6. Types of nodes and possible connectionsa Megablock graph.

The Operationnode (see Figure 4.6a)), represents an operafidimeograph (e.g., add,
sub, mul). TheConstantnode (see Figure 4.6b)) represents an unchangdaétal value
(e.g., the integer value 100). Thareln node (see Figure 4.6¢)) represents an externaéval
which needs to be fetched before starting the Mleglexecution. Th&xit node (see Figure
4.6d)) represents an exit point of the Megablock.

There are five types of connections, described vbelbote that certain types of
connections include additional information represdrherein with labels.

data: connections which represent the flow of data lketw outputs and inputs of
operationsOperation ConstantandLivein nodes can be sources of data, but@peration
node is the only node which can be a sink afasa connection.Constantnodes are, by
definition, unchangeable and cannot be sihkgein and Exit nodes can receive data from
other nodes, but special types of connections see to indicate what kind of data is being

transmitted.

48

We use herein a label in the form@UT:IN " for eachdata connection.OUTis the
output index of the source node adhd is the input index of the destination node. Whaa t
source of the connection isLasein or aConstantnode, theDUTvalue is left blank (i.e., the
label becomes:IN ”). For instance, in Figure 4.7 we have t@perationnodes connected
by adata connection, which indicates that the output O fl@perationl connects to the input

1 of Operation2.

0
Operation 1 Operation 2

Figure 4.7. A data connection between two operationodes.

control: boolean value (represented as 0 or 1) fronOparationnode which indicates if
an exit point is triggered or not. OnBxit nodes can be sinks obntrol connections. Each
control connection includes a label in the form&UT, whereOUTis the output index of the
sourceOperationnode.

liveout: data connection which represents the value fog oh the outputs of the
Megablock, for a particular exit. Onlgxit nodes can be sinks 6¥eout connections. Each
liveout connection includes a label in the form&@UT.SYSTEM_VAR where OUTis the
output index of the source node aBY¥STEM_VARhe name of the system variable to be
updated. For instance, the name REG2 can reprdsersiecond general purpose register of
the main processor. If the source node @oastantor aLivein node, the value dDUTis left
blank.

feedback: data connection which represents internal upditethe values which were
initially fetched before Megablock execution stdrt@nly Livein nodes can be sinks of
feedbackconnections. Eacteedbackconnection includes a label in the form@&UT, where
OUTis the output index of the source node. If there®mode is £onstantnode, the value of
OUTis left blank.

exitAddress: when processing Megablocks, in most cases ibssiple to calculate, before
Megablock execution, from which instruction addrdb® processor needs to resume
execution, after an exit point of the Megablockwewer, it can be the case that the address
can only be determined during Megablock executidre exitAddressconnection represents

the instruction address from where the processaumes execution, for a particular exit.

49

Only Exit nodes can be sinks @xitAddressconnections. EaclexitAddressconnection

includes a label in the forma©UT, whereOUTis the output index of the source node.

4.5 Adapting Source Code to Megablock Detection

Megablocks can be detected in examples with cefibel in their loop bodies (causing
the existence of branch instructions), if the sgain consecutively repeats during execution.
However, it can happen that no patterns ever faue, to the execution path being highly
sensitive to values of input data. Even in the walsere different paths of a loop are detected
(corresponding to different Megablocks), if thelgathemselves do not repeat enough times,
Megablocks will execute a low number of iteratigrex call, which can lead to excessive
overhead, possibly outweighing the benefit of tbeeterator. This can prevent the use of
Megablocks.

In this section we propose a set of rules for fiansing source code with conditional
statements into a straight-line code sequencegasanrg the potential to detect better
Megablocks. This transformation is commonly knows ifaconversionin the compiler
literature [29], and enables techniques sucheasor-mask contrplused to execute code with
conditional execution in vector processors and GPUse benefit from the approach
presented here is that it allows to perfoifrconversion by doing source-to-source
transformations, without additions to the langudesay., pragmas) or modifications in the
compilation tools.

45.1 General Definition of the Transformations

The main targets of the transformations are coastms of the type represented in Figure
4.8. We want to rewrite these sections so thatcimpiler writes straight-line code, as
opposed to using branching instructions.

In their most general form, the structures in Fggut.8 can be replaced by the
corresponding structures in Figure 4.9. The eqaiMatode uses @mux binary operation, of
the typevalue mux condition where value represents any kind of data, awcdndition
represents a boolean value. This operation rettahs if conditionis true, or 0 ifcondition
is false. In a later section, we will present ceterexamples on how to implement thax
operation. The equivalent code in Figure 4.9 inetudhe boolean operatoamd, or and

negation (!).

50

i f(condition 1){

i f (condition) { a = operation 1
i f (condition) { a = operation 1 }
a = operation; } else{ el se if (condition ,){
} a = operation 2; a = operation 2;
} } else{
a = operation 3
}
a) b) c)

Figure 4.8. Examples of the target code subject toansformation: a) single if statement; b) if-else

statement; c) a chain of if-else statements with bitrary size.

a) a = (operation nmux condition) or (a nux !condition)

b) a = (operation 1 mux condition) or (operation > mux !condition)

c) a = (operation 1 mux condition ;) or (operation > mux (condition 2
and Iconditon ;) or (operation 3 nux (lcondition » and

Icondition ;))

Figure 4.9. Equivalent code when applyingf-conversion to a) single if statement; b) if-else statement;

¢) a chain of if-else statements with arbitrary sie.

Each case can extend the examples of Figure /©8ue any statements as necessary, and
the case in Figure 4.8c) can be extended to hameaag conditions as necessary.

These transformations remove the branches becaesefdrce the loop, during each
iteration, to execute the instructions of all patas opposed to execute only the instructions
of a particular path). As such, when executing ttaesformed code in the GPP alone, the
functionality is maintained, but generally the ext@n time will increase. However, when
executing the transformed program in a system saport for dynamic partitioning, moving
the new found Megablocks to an RPU can reduce xbeution time, when compared to the

original, unmodified program.

4.5.2 C Transformations Targeting the MicroBlaze Processo

Since we are neither modifying the source codeuagg specification nor the compilation
tools, the implementation of the technique is delah on the target environment, and needs

to be adapted to each particular case. In thisosegte provide transformation examples

51

when considering C as the source language, andtiragghe MicroBlaze processor with the
mb-gcc4.1.2 compiler. Figure 4.10 shows how to calcullagetermconditionfor the example

a cond b, wherecond is a comparison operator (i.e., >, <, >=, <=, ==19). The
transformation relies on the compiler resolving tendition to a boolean value without
having to use branch instructions. This happenetistently in the tested cases when the
comparison was done between a variable and zetioe IEomparison with zero is done with
an expression, instead of a variable, the compti#ruses branch instructions in some cases

(e.g., when using expressions with more than onahla).

a) temp = a-b;
condition = temp cond O;

b) asm("cmp %0,%1,%2": "=r" (temp): "r" (b), "r" (a));
condition = temp cond O;

Figure 4.10. How to calculate the terntondition in C using a) plain C and b) inline assembly, when

targeting the MicroBlaze processor.

The example in Figure 4.10a) works when the vabfes andb are signed values, and
their values are such that during the subtractiorowerflow/underflow never occurs. For a
general case, we use the example in Figure 4.1ogh inserts the MicroBlaze assembly
instructioncmp (cmpu when the comparison is between unsigned values).

Figure 4.11 shows the expression in Figure 4.9aguisvo possible implementations of
themux operation written in C. The most straightforwarplementation is to implement the
operations as a multiplication (see Figure 4.1ldpwever, multiplication may become too

expensive to be used if there are mamy operations in the transformed code.

a) a = (operation x condition) | (a x Icondition);

b) condition = ~condition + 1;

a = (operation & condition) | (a & ~condition);

Figure 4.11. Applyingif-conversion to a single if statement in C, when thenux operator is a) a

multiplication and b) a logical or.

Figure 4.11b) transforms the tenondition by inverting it and adding one. If the value of

the term is zero, this transformation returns zddowever, if the value is one, the

52

transformation will set to one all bits of the terAfter the transformation we can use the
bitwise andoperator (&) instead of a multiplication. Notideat now thebitwisenot operation
(~) is used, instead of thegical notoperation (!).

The second approach seems to be more indicatdthfdware implementation, as it uses
simpler operations. However, it can result in aglemcritical path when compared with the
first approach, depending of the latency of thetiplidation. Additionally, if after obtaining
the intermediate representation graph we can ddtett one of the operands of the
multiplication is a boolean value (0 or 1), we carodify the graph and replace the
multiplication by a mux operation (see timeil. to muxtransformation, described in Section
5.1.4).

4.6 Summary

In this chapter we described the Megablock, the Istsucture we propose for moving
instructions from a GPP to an RPU. We presentedhlaeacteristics we find desirable when
selecting a portion of code to move to the RPUsugbested the Megablock as a candidate.

When comparing to the partitioning approaches prteskein Chapter 3 (see Table 3.1), the
Megablock differs from them as it represents repetipatterns of code in the trace of the
executing program, possibly representing a loopha original code. For small loops, we
expect the instructions covered by Megablocks torbear to the instructions covered by the
partitioning method of the Warp processor [13] (ttleer approach which considers loops).
However, the Megablock has the potential to inclodsted loops, recursive calls, and loops
formed with irregular constructions suchgagos In addition, as the Megablock is built using
segments of instructions forming an execution pétlallows for dynamic optimizations
aware of information known during runtime, as oggab approaches which rely only on the
static structure of the code.

We presented an algorithm for Megablock detectwith suitable characteristics for
runtime application, and suggested a graph inteiatedepresentation for the Megablocks.
Finally, we proposed a methodology which can beluseincrease the quality of detected
Megablocks without modifying the compilation todbw, by applying source-to-source

transformations.

53

5 Transforming and Implementing
Megablocks

This chapter presents practical aspects relatédtetonplementation of Megablocks.
It explains how to build the Intermediate Repreagon (IR) introduced in the previous
chapter, and proposes a set of transformationsrwdain be applied over the IR.

The Detectionof Megablocks can be done offline, during a peofihase. However,
even in that case, for dynamic partitioning we neednethod to identify these
previously detected Megablocks at runtime, whenraih@ication executes. We propose
two methods for runtime Megablod#tentification Single Address Identification (SAI)
and Megablock Signature Identification (MSI).

We present several architecture models capablepliementing Megablocks, and
explain how we can augment a Megablock-enabledtanthre to support pipelining of

Megablocks.

5.1 Graph Transformations

This section explains how to transform assemblyrucsions, such as the ones used
by the MicroBlaze processor, into the IR presentedection 4.4. Before mapping
segments of executed instructions such as the Nmgabto a coprocessor, we can
apply several transformations over the segmengs, ® expose more ILP, and/or to

reduce the number of instructions to map.

5.1.1 Mapping MicroBlaze Assembly to Graph IR

As in the experiments we use the MicroBlaze pramef@)] as the target GPP, the
examples in this section show how to convert a Megk formed by MicroBlaze
assembly instructions into the graph IR. Note, hawvethat a similar approach can be
applied to other processors.

The first step is to extract information from eakticroBlaze instruction in the
Megablock. For each instruction, we store inform@tbout the instruction address, the

operation to be performed (i.eopcod@ and its operands. For each operand, it is

55

determined if it is an input or an output, the type., register or constant), and a label.
If the operand is a constant, the label contam$téral value; if the operand represents
a register, the label identifies the register.

Table 5.1 presents additional information extractedm the sequence of

instructions, used during the construction of thepb.

Variable Description

If instruction represents a branch/jump, indicdftéise branch/jump is taken or not

BranchTaken during Megablock execution.

Indicates if the instruction represents an exinpoi the sequence of instructions

ISExit (takes delay slots into account).
NextAddress The address of the next instruction that will beaxed in the sequence. If
instruction is a branch/jump, indicates the addadtes delay slots.
The address of the next instruction. If the curiestruction is a branch/jump,
NoJumpAddress

indicates the address after delay slots, consigé¢hiat the branch/jump is not taken.

Table 5.1. Additional information acquired from the instructions in the Megablock sequence.

After all information is collected, the graph cae Ibuilt by considering the
instructions according to the Megablock sequeneehBEnstruction can originate zero,
one or more graph nodes. For instance, the Mica#Blastructions do not allow to
represent 32-bit constant values in a single iottrn (the maximum is 16-bits). The
instructionimmis used to indicate the 16 upper bits of a 32dwmtsstant [90] in the next
instruction. Thamm instructions are not translated to operations,itlsunformation is
used to directly create 32-bit values in the intdate representation. The other case
where instructions do not generate an operatiovhisn an instruction is detected to be
anop, (“or RO, RO, R0O’is a defaulhopinstruction in the MicroBlaze processor).

Most instructions generate one equivalent operatiarad/store instructions and
some jump/branch instructions are exceptions. lstadd instructions are unfolded into
an addition, which sums a base address with tlseipffind a load/store operation.

For most jump/branch instructions, the informatidrom the sequence of
instructions in the Megablock is sufficient to edlte the destination address of the
jump/branch. However, in some cases (e.g., instmuatsd) the destination address
depends on the runtime value stored in a registémaeds to be calculated during the
execution of the Megablock. In this case, the Wi§omp instruction is unfolded into a
comparison operation, which will test the exit gpiand an addition which calculates
the destination address.

56

With the above information it is possible to bualdyraph with information about the
data connections between operations, and add tihe@nrts of the graph. After all
instructions are processed, tfeedbackconnections (Section 4.4) are added to the
graph. Finally, we build a table with informatiofacat which operations write the

output values of the Megablock.

5.1.2 Constant Folding and Propagation

One possible transformation is Constant Folding Rrapagation (CFP). With CFP,
operations with only constants as inputs, or usagisters whose values are determined
as constants, are replaced by the result of theabpe. This transformation can be
applied to every operation node, and each operatae defines its own rules on how
it should behave in the presence of constant ingids instance, arithmetic and logic
operations (e.gadd suly and xor) use the arithmetic and logic rules that corresipon
their operation.

CFP is extended to other types of operations, agsdhe comparisons which control
the exit points. If an exit point has constant aepels, it can be determined that the
alternative path represented by the exit will nebertaken (e.g., exits created from
branches which represent calls to/returns fromtfans). In such cases, the operation
node and the exit point can be removed. This is @&W, applied to Megablocks, can
remove operations related to function calls.

Connections of the typéeedbackoriginate from operation nodes, but can only
connect to nodes of the typeveln, which represent input values to be read before
Megablock execution. If an operation replaced ley@#P has éeedbackconnection as
output, the inputivein at the end of the connection can also be replageal constant
value, removing an input value from the Megablo8kace Liveln nodes represent
inputs of the Megablock, CFP can propagate thetanohwalue transmitted by the
feedback connection by performing another pass theenodes of the graph, and this
step can be repeated every time avein nodes are replaced by constant values at the
end of the pass. We named this step as Multi-P&&s C

Multi-Pass CFP cannot be always applied. The gtemtsformed by this technique
assumes that when the Megablock starts executlieg>PP has previously executed at
least as many iterations of the Megablock as pgssdsrmed by the CFP (to guarantee

57

that theLiveln nodes have the input values calculated by CFR%. ddn be enforced or

not, depending on the identification method usee Section 5.4).

5.1.3 Identity Simplifications

Another transformation applied is Identity Simmdtion. It takes advantage of the
identity property of some operations. Opportunitiesapply this transformation can
appear in graphs created from assembly instrucsote it is common for compilers to
use the identity property to implement attributiansassembly. For instance, a high
level instruction such as= 10 can be implemented with an add instruction such as

add r4, 10, 0

5.1.4 Multiplication to Multiplexer

The Multiplication to Multiplexer(Mul to Mux) transformation, with an example
illustrated in Figure 5.1, is a form of strengtduetion, where an expensive operation is
replaced with an equivalent, less expensive omaraiiVhen we determine that one of
the operands of a multiplication can only haveuakies O or 1, the multiplication can
be safely replaced by a multiplexer, which chodsetsveen the value 0 and the other
operand. Opportunities for this transformation eppear wheif-conversionis applied

to the source code (Section 4.5).

input 1 Oorl inputl g1

a) b)

Figure 5.1.Mul To Mux transformation: a) graph before the transformationis applied; b) graph

after the transformation.

5.2 Hardware Module for Megablock Detection

Figure 5.2 presents a hardware solution for Meg&bttetection, when using basic

blocks as the detection unit. It has three mainutexd theBasic Block Detectoreads

58

the instructions executed by the processor, anectiewhich instructions correspond to
the beginning of basic blocks. It outputs the undion addresses corresponding to the
beginning of basic blocks (signBB_addresk and a flag which indicates if the current

instruction is the beginning of the basic bloclgfsilis_BB_addregs

Address + Instruction

Basic BlOGH is_BB_address
Detector .
Oorl
0
)
5 Trace
EI Buffer
M
oy
pattern_size
Megablock >
Detector
pattern_state

Figure 5.2. Hardware solution for Megablock detectin.

The Megablock Detectoreceives pattern elements, which in this caséasfirst
address of basic blocks. It outputs the size ofctiveent pattern, or zero if no pattern is
detected (signapattern_size and a control signal indicating the current estat the
detector (signgbattern_statg

The moduleTrace Bufferis a memory that, when Megablock detection isvacti
(i.e., the module is currently looking for Megalkey, stores the last instructions
executed by the processor, their correspondingeadds, and a flag which indicates if
the instruction corresponds to a pattern elemerith@fMegablock (e.g., the start of a
basic block). After a Megablock is detected, frace Bufferstops storing executed
instructions and can be used to retrieve the dedddiegablock.

Figure 5.3 presents the general diagram for Negablock Detectorlt contains
three modules: theéSquares Detectorfinds patterns of squares according to the
algorithm presented in Section 4.3. It receivesepatelements and detects squares of
size one up to a maximum, using as output a flag dach square size

(pattern_of_size X

59

A pattern element can trigger one or more squaessiThe modul®attern Size
Arbiter & Encoder receives the individuapattern_of size Xlags, chooses which
pattern size should be given priority and encotéeschosen size into a binary string.
For instance, when detecting only inner loops, thizdule can be implemented as a
priority encoder.

L pattern_element

Squares Detector

- pattern_of_size X

Oorl

YV Y

Pattern Size Arbiter &
Encoder

pattern_size

Y

Pattern State

pattern_state

Figure 5.3. Diagram for the Megablock Detector.

The modulePattern States a state machine which indicates the currené sththe
pattern, and can have one of five valud®attern_Started Pattern_Stopped
Pattern_Changed_SizdBattern_UnchangedndNo_Pattern

Figure 5.4 presents the block diagram for a hardwaplementation of th8quares
Detector The architecture in the figure can detect squaioes size 1 up to 3, and can
be easily extended to support larger square dizdbe implementation presented here,
thepattern_elemergignal corresponds to an instruction address.

Each detector for a specific square size (with pttar of the detector for size one)
uses &IFO. WhenFIFOs have a reset signal they are usually implememtédidware
using Flip-Flops (FFs), becoming relatively expeasiaFIFO needs a number of FFs
equal to the #bitx size of FIFO). However, if it is not necessary to access the
intermediate values ofIFOs, they can be implemented with considerably less
resources (e.g., if an FPGA has primitives for tstefjisters available). When using
suchFIFOs, the reduction factor in resources can be as agyh6 and 32 (e.g., when
using the primitives SRL16 and SLR32 in Xilinx FP§Aespectively) sizes [110, 111].

60

Detector of Patterns of Detector of Patterns of { | Detector of Patterns of

Test Size 1 Size 2 Size 3

pattern_element
—» FF » FF » FF » FF

CMP CMP | CMP |

Oorl Oorl Oor1l

pattern_of_size_1 Reset FIFO Reset —¢ FIFO

pattern_of_size_2 i

pattern_of_size_3

Figure 5.4. Diagram for a hardware implementation 6éthe Squares Detector.

5.3 Megablock Translation using the Graph IR

Figure 5.5 presents a possible chain of stepshdftanslationphase, where a set
of assembly instructions representing a Megablecy.(the output of the Megablock

Detector in Section 5.2) is transformed to an RBhfiguration.

Megablock Megablock Megablock Megablock RPU
ASM ASM Graph IR Graph IR Config
! Graph
—» Normalize > » Transform > Map >
Converter

Figure 5.5. Possible chain of steps inBranslation phase.

Depending on the implementation, the chain of stegps be done during program
execution (i.e.,online), before program execution (i.eqffline) or in a mixed
environment (i.e. a number of initial steps of ttleain are doneoffline, and the
remainingonling). Likewise, each step in the chain can be impldetas a dedicated
hardware module, or as a software program. Foarmgst in the implementation of a
dynamic partitioning system presented in Appendjxal the steps of th&ranslation
chain are doneffline and implemented in software.

Megablock implementations usually depend on the @tk execution starting at

a particular instruction, thestart instruction The stepNormalize decides which

61

instruction of the Megablock is the start instranti This step receives the assembly
representation of the Megablock as input, and @sacichich instruction is considered as
the start instruction.

Due to its repetitive nature, virtually any insttioa of the Megablock can be used
as the start instruction. In this work, we havedutte following algorithm to calculate
the start instruction: considering only instrucgBathat correspond to pattern elements
(e.g., first instruction of basic blocks), chose tbhne with lowest address, which is
unique in the Megablock. If we cannot find a starstruction for a particular
Megablock (e.g., all addresses appear more thantiome when considering the
previous algorithm), the Megablock is not considdii mapping.

The stepGraph Convertetransforms the assembly representation of the blegh
into the graph intermediate representation (egti®n 5.1.1). The output of this step is
a Megablock represented as a graph (i.e. the Medaltbraph). The stepransform
applies transformations over the graph represemtgie.g., Section 5.1.2 to Section
5.1.4). The output of this step is the graph regmtion of the Megablock, after
applying transformations.

Finally, the stepgMap converts the graph representation into a conftgurdor the
target coprocessor. The implementation of this sepighly dependent of the target
architecture. In this section, we present a maprikgn which can be used for the
architectures in Section 5.5.1 and Section 5.5k mapping algorithm is divided in
two parts, placement and routing.

Our placement algorithm has three stemsildDistanceGraph addDependencies
and rearrangeGraph Placement uses another graph representationeoitgablock,
the Distance Graphwhich can be built from a Megablock graph. ThetBice Graph
differs from the Megablock Graph in the followingpects: the placement takes into
account timing constraints, so each node includes latency of the operation it
represents; since the graph is to be used to eddctihe placement in architectures
which can time-multiplex a design through severahfigurations, each node also
includes information about the current configunat{@e.,configuration level assigned
to it (in row-based architectures, each configoratepresents a row). Each connection
between a source/sink node in a Distance Grapludesl an additional parameter,
minimum distancewhich represents the minimum number of levets,(rows) between

two nodes (this value is usually dictated by therlay of the source node).

62

The first step of placemenbiildDistanceGraph is to build the Distance Graph
from the Megablock Graph. Based on the latenciesagh operation, to each node is
assigned an initial configuration level which respthose latencies. At this point, the
Distance Graph only has data connections. The destap &éddDependencig¢sadds
connections which represent dependencies betwedasn(@or instance, to serialize
writes to memory, one can add connections betwaeh store operation, representing
the dependency). After including the dependencyneotions, the configuration level
assigned to some operations may no longer be Vl.then apply the third step,
rearrangeGraph whose algorithm is represented in Figure 5.6. fiimetion changes
the configuration level values of each node so tiney respect the existing connections
and the given architecture constraints (e.g., tagimum number of memory operations

per level/row).
“Constraints” contains architecture constraints

rearrangeGraph(DistanceGraph)
CurrentLevel =0
whi | e CurrentLevel <= getMaximumLevel(DistanceGraph)
LevelNodes = getNodesFromLevel(DistanceGraph, CurrentLevel)
NodesToMove = getNodesToMoveDown(LevelNodes, Constraints)
for each Node in NodesToMove
setLevel(Node, CurrentLevel+1)

rearrangeNode(Node)

CurrentLevel++;

Figure 5.6. Algorithm for the function rearrangeGraph.

The algorithm starts at the topmost level, andaiess over each level until there are
no more levels. In each level, the nodes of thadllare identified detNodesFromLevgl
and testedgetNodesToMoveDownDuring the test, the nodes that do not resgest t
minimum distance indicated in the connections ®&rtparents go immediately to the
NodeToMovdist. The remaining nodes are tested for archutectonstraints. If there
are not enough resources in the level/row for #m@aining nodes, the outstanding

nodes are added to thedeToMovdist. An algorithm can decide which nodes should

63

go to the list, and which nodes should stay inl¢hrel/row. The current implementation
uses a first-come, first-served approach.

After deciding which nodes should stay on the aurlevel/row, the other nodes are
moved to the level/row below and each node is asged individually. Figure 5.7
presents the algorithm for the functiomarrangeNode When a given node does not
respect the minimum distance between itself andiran node, the node is pushed
down until it reaches a valid position. After achigy a level which is valid to all parent

nodes, the algorithm is recursively applied todhiédren nodes.

rearrangeNode(Node)
f or each ParentNode in Node
NodelLevel = getLevel(Node)
MinimumbDistance = getMinDistance(ParentNode, Node)
i f NodelLevel < MinimumDistance
NewLevel = getLevel(ParentNode) + MinimumD istance

setLevel(Node, NewLevel)

Figure 5.7. Algorithm for the function rearrangeNode.

For instance, consider the example in Figure Z.8epresents a DistanceGraph
created from a Megablock graph, after the firgb stethe placement algorithm. To each
node was given an initial placement. The connestiam the figure include the
respective MinimumbDistance. After adding node deleecies, the connection from the
node in level 1 to the nodmp makes the placement of the latter invalid (undmesdt
distance). Applying theearrangeNodefunction to the nodep, it is moved to level 3
(parent level (1) + minimum distance (2)). Sindecahnections from parents tp are
valid, rearrangeNodes applied to all children ajp.

After obtaining a valid placement for all nodese tloute algorithm presented in
Figure 5.9 calculates the connections between naeaesuses pass-through registers to
communicate values between distant levels. It mesparametetMaxCommbDistance
which represents the maximum communication distd@ete/een levels/rows. A value
of zero indicates an architecture which can onlynewnicate between adjacent

levels/rows.

64

; €

1
1Q2 1Q
2
1

[J)
>
It 1 1 .
: D
4
Figure 5.8. Example of the functiorrearrangeNode
route(DistanceGraph)

for each Node in DistanceGraph
for each ChildNode with data connection in
NodelLatency = getLatency(Node)

Distance = getLevel(ChildNode) — NodelLeve
if(Distance<=MaxCommDistace)

addDirectConnection(Node, ChildNode)
else

usePassthrough(Node, Distance)

MaxLevel = getMaximumLevel(DistanceGraph)

for each OutputRegister in DistanceGraph
OutputNode = getOutputNode(OutputRegister)
NodelLatency = getLatency(OutputNode)

Distance = MaxLevel — getLevel(OutputNode) -
usePassthrough(OutputNode, Distance)

Figure 5.9. Routing algorithm in the Map step.

5.4 Megablock Identification

Node

| - NodeLatency

NodelLatency + 1

After a Megablock has been detected for the filsef one can identify future calls

to the same Megablock in the instruction trace. Wepose two techniques for

Identification of previously detected Megablocks: Single Addrielsntification (SAI)

and Megablock Signature Identification (MSI).

65

SAIl uses the address of the start instruction ef Megablock as the identifier.
Megablocks are identified by examining the executrace of the GPP, looking for the
instruction address that matches the address oftdme instruction assigned to the
Megablock. As the Megablock identification with S/l done just by examining a
single address of the execution trace, there igyuarantee that the Megablock is
executing when the address is detected.

MSI relies on using the Megablock instructions #malr corresponding addresses to
build a signature which uniquely identifies a Melgak. After identifying a signature,
the method needs a synchronization period whevaits until the GPP executes the
instruction which corresponds to the start addoésise identified Megablock.

To build the signature, we can use any functionctvhtan generate a unique
identification from the instructions and/or the egk$es of the Megablock. For instance,
we can use a hash function over the start addfessch unit that forms the Megablock
although, depending on the function used, the sigaacan be dependent on the start
address of the Megablock (i.e., the result of thecfion is different depending on the
start element of the sequence). To avoid this, @elro use a function which generates
a signature from a list of inputs but whose redalts not depend on which input is used
as start. For instance, a sum of all individualredsles of the Megablock units respects
this requirement. However, since the unit addressesvalues which can be close to
each other, it is common for this function to résala high number of collisions. An
alternative solution is to pass each address threuhash function [112], to introduce
variation in the inputs, and sum all results.

Table 5.2 resumes most important characteristicgotth methods. As in SAI the
identification corresponds to the address of tlagt $hstruction of the Megablock, we
cannot identify different Megablocks with the sastart address as we would not be
able to distinguish between them. IdentificatiotM8I is decoupled from the address of
the start instruction, and several Megablocks carehlthe same address. We can work
around this limitation in SAI if the heuristic thassigns the start addresses takes into
account which addresses have been used for prévieiected Megablocks.

However, MSI needs to detect if the Megablock ieceing before identifying it
(for instance, with the help of the hardware modateMegablock detection introduced
in Section 5.2). This introduces latency, as wednibe Megablock to execute at least

two iterations before it can be identified. And eaftidentification, we need to

66

synchronize the execution, which can take up tingles iteration. SAI can identify a
candidate at the moment the GPP asks its startatsin, although it is more prone to
false positives.

Constant propagation with multiple passes assuimasthhe Megablock currently
executing has run for at least as many iteratioth@siumber of passes applied. As with
SAl we do not have that guarantee, we can onlysugge pass constant propagation.

Characteristic SAl MSI
Identification Start address of the Megablock Signature made from several
addresses

Independent of identification.
Multiple Megablocks can use the
same address

. Same as identification. Only one
Address of Start Instruction Megablock for each address
Latency between Megablock

identification and execution No latency Atleast 2 iterations

Constant Propagation Single pass only Up to multiple passes

Table 5.2. Characteristics of the proposed Megabl&ddentification methods: SAl and MSI.

A possible implementation can use either methoddentification of Megablocks,
or include both methods. For instance, an impleateant can use SAIl as the default
identification method, and use MSI when SAl is able to identify a Megablock (e.g.,
when two Megablocks have the same start instruction

5.5 Architectures for Implementing Megablocks

According to the coupling taxonomy presented inufég2.3 of Section 2.5, we
present two general system architectures for impiging Megablocks. Figure 5.10a)
shows an architecture with an RPU connected toldbhel bus, were all modules
communicate through the same local bus. Figureb).48ows an RPU coupled to the
GPP. In this case all communication is done throdgticated channels. We do not
consider the coupling in Figure 2.3a), an RPU cedipb the I/O bus, since we think it
is very similar in implementation to the case igu¥e 2.3b) but with potentially higher
latency. We also do not consider the coupling iguFé 2.3d). We think the needed
degree of integration of the RPU with the GPP isuiable for implementing
Megablocks.

In both architectures we have a GPP, which will tha program, and an RPU

which will execute the Megablocks. In Figure 5.10&¢ consider that the GPP fetches

67

instructions through the local bus and that thesdructions are intercepted by the

Dynamic Partitioning module.

GPP
Y . Memory RPU
Dynamic
Partitioning
/ / /
Local Bus |

a) RPU coupled to a local bus

/ r

Dynamic

RS Partitioning

GPP

Y

h J

Instructions
Memory

Data Memory

b) RPU coupled to the CPU

Figure 5.10. General system architectures for Megack implementation.

The job of the Dynamic Partitioning module is tcemtify Megablocks in the
instruction stream and handle the communicatiotimes which exchange data between
the GPP and the RPU. The module is also resporfsibteconfiguring and starting the
execution of the RPU and stall the GPP. The arctite of Figure 5.10b) is equivalent,
but uses dedicated connections instead of a bus.

Equation (5.1) presents the general equation famasng the overall speedup
achieved by the architectures when using the RFRUCrepresents the clock cycles
executed by the program when using only the GPR. ddnominator of the equation
considers the execution with the GPP and the RRUdaides the execution clock
cycles into two parts: the cycles that belong tacalls to Megablocks (MbCalj) and
the cycles which are executed by the GPP (CPUxypequation (5.2) represents the

clock cycles taken by a single call to a Megablothke terms of these equations are

68

defined according to the specific implementatiohthe architectures of the system and
RPU.

o CPUL,
PeedliP = $ MbCallg, + CPU-Seqq, (5.1)
MbCallc, = RPU, + Overheadc, (5.2)

5.5.1 General 2D CGRA

There have been several work efforts [14, 27] whithAnsparently move
computations from a GPP to a CGRA coprocessor wittD topology, as the one
presented in Figure 5.11. Row-based CGRAs with d&dwcommunication have been
used as targets for GPP computation [14, 113]. Timy a simple communication
scheme that significantly simplifies the routingagh.

Figure 5.11 shows the general architecture for aREM which can be used to
implement Megablocks. It consists of a reconfiglgaarray with K rows of FUs
(Functional Units) and forward communication betweaws. The architecture contains
an lteration Control module, which will stop the BRExecution if an exit condition is
activated. The FUs which can communicate with teeation Control module can be
used to implement the operations that signal eXte. last row of the RPU is a row of
output registers, which are updated with the iteratesults if no exit signal is active.
These registers are connected to the first rowldd, vhich can use the results of the
completed iteration in the next iteration.

This architecture executes the iterations of thgaéockatomically If an iteration
completes (i.e., there are no active exit signtityr she execution of the last row) the
results are committed to the Output Registers. @tise, the results of that iteration are
discarded and execution in the RPU stops. Atonei@iions imply that when an exit
point is activated during an iteration, the iteyatis discarded and execution continues
in the GPP at the beginning of the discarded itanat

Before transferring execution to the GPP, the stétihe system needs to return to
the beginning of the last iteration. For instantell changes during RPU execution are
restricted to internal communication inside the RBlg state of the system is contained
in the values of the Output Registers, which canupdated only if an iteration
completes successfully. When an iteration failg, ¥hlues of Output Registers, which

69

currently have the results of the previous iteratire not updated by the last iteration.
These are the results communicated to the GPP. owé the RPU changes the state
of a memory, any change that occurred in the tasttion has to be reverted, which can

imply a memory rollback mechanism.

Row K-1
Y v v v e, -
Interconnect T
S
=
\ y v y v Y | v Y | v >
S LD/ST| | LD/ST 2 |8
= 1 g FU 1 FU2 || FUN | = 2
Q = =X
s .
%- Exit Condition
g Y Y Y v Y
=) Interconnect
)]
Y Y Y v Y
Output Registers -
Write Enable
- +——
2 -
@]
X -

Figure 5.11. General architecture for a 2D CGRA-basd RPU which supports Megablocks.

On the other hand, when iterations are atomic tbkitecture only needs to keep
track of a set of output values, instead of a sefppssible exit point. Furthermore, there
are fewer restrictions when mapping the Megabldiog,tools only need to ensure the
results at the end of the iteration without thedhieeguarantee intermediate results; and
when the execution returns to the processor, thguction address where execution
resumes is always the same, the address of theudtish that corresponds to the
beginning of the Megablock iteration.

Equations (5.3) and (5.4) define the terms of fheedup equation (5.2) for the case
were we model the latency in clock cycles. WhenR&tlJ based on the general 2D
CGRA architecture is coupled to the system archites presented in Figure 5.10.
They represent the clock cycles needed for a stajléo the RPU.

In equations (5.3) and (5.4),:Ns the number of iterations completed by the RPU.
As iterations are executed atomically, the iteratMhere the exit point is activated will
always be executed and discarded, which adds touhwer of completed iterations.

Itcy is the number of clock cycles the RPU needs topteta an iteration. For instance,

70

if each row of the RPU takes one cycle to execthe, term corresponds without
pipelining to the number of mapped rows. Commurocay represents the clock cycles
needed to communicate data to and from the RRAbkllides the communication of the
values between the GPP and the RPU, as well asR®Ple configuration bits.
Partitionegy, corresponds to the additional clock cycles neebgdthe dynamic
partitioning system besides communication. Finalgce the parameter CPU-gSgn
equation (5.1) does not consider any part of tlop kexecution and we are considering
an atomic execution of the iterations, the anadytimodel needs the parameter
LastlterationInGppy, which represents the GPP clock cycles neededéguée the
incomplete iteration discarded by the RPU.

RPUCy = (NIt + 1) X ItCy (53)

Overhead¢, = Communicationc, + Partitioner, (5.2)
+ LastIterationInGppcy .

5.5.2 Specialized Array (SAr)

Megablocks can be translated to HDL descriptiond #men synthesized to a
reconfigurable fabric. Similar techniques have bpesviously used, for both offline
and online scenarios. Kuzmanewal.[114] extract kernels from an executable during a
profiling phase. Those kernels are then processddransformed offline into hardware
descriptions and implemented using tools for FP@&da hardware synthesis. The
hardware implementations are then available duthrey execution of the program.
Approaches such as Warp [13] propose an onlinewsarl generation scheme which
uses custom synthesis tools and custom reconfitgufalrics.

Based on the general architecture for a 2D CGRAeumg Megablocks, depicted
in Figure 5.11, we propose the Specialized Arrayr(Sa specialization of the
architecture for a single Megablock. Figure 5.1@spnts two instances of the SAr for
two different hypothetical Megablocks. Since thech#tecture only executes one
Megablock, the functionality is fixed and does tatve configuration bits. In the
examples in Figure 5.12, the FUs are replaced Iplementations of the Megablock
operations, and the configurable interconnectiosoueces are replaced by direct
connections. Note that, depending on the implentientathe direct connections can

71

either be simple wires, or ha¥@FOs for synchronization of results. The execution is
similar to what was described for the 2D CGRA geharchitecture in Figure 5.11. The
iterations are executed atomically, and when thpuiwf each operation is registered,

the execution cycles of the SAr and the overheadjmen by equations (5.3) and (5.4).

- Input Registers > Input Registers
¢ ¢ # Yy v A
add add _ add and
5 5
2 R 2
v S \ <}
o 0
Sub % or g
= s
‘ i
equal Aol equal
Zero 7ero
| |
+ Exit Condition * ¥ o - " »
\ y Exit Condition
Output Registers .
. > Write Enable Output Registers
Write Enable
a) b)

Figure 5.12. Two possible SAr instances for two diact Megablocks.

5.5.3 Specialized Reconfigurable Array (SRA)

In the previous approach, a specialized modulerested for each Megablock.
However, as Megablocks are specific to a singlgqam, and for any given program
just one Megablock is executing at a time, only oh¢he hardware modules will be
active at any given time. The Specialized Recoméible Array (SRA) merges
individual Megablock implementations into a singlstime reconfigurable array. At
any given time, the SRA can only execute one Memhlbut it can be reconfigured at
runtime to execute any of the Megablocks it impletee The objective is to reduce
resource usage and reconfiguration time (when coedpaith the general 2D CGRA)
while providing an RPU with runtime reconfiguratyl{a validation of this approach is

presented in Appendix A).

72

Figure 5.13 presents an instance of the SRA imphimge the Megablocks depicted
in Figure 5.12. The connections can be configuaedording to the active Megablock.
An implementation of this architecture can use dimnnections for communication,
as the SAr architecture example (presented in Ei§ut2), allowing several input wires

to be multiplexed in the input ports of shared FRAIs.alternative implementation can

forward communication between adjacent rows (sgarki5.13), using FUs to bypass

values across rows (bypass FUs). The FUs markddavitt” are reused between the

Megablock configurations considered in this cadee €xecution clock cycles of the

SRA and the overhead can be estimated with eqsatto8) and (5.4).

4 Input Registers
\ A | ¥y \ A
[+]
add add and
Y \J A _
o \ Interconnect | | @
S 2
= # ¢ L # \ A)
Q@ >
c 0O
) sub pass or S
S S
2 v v Y
@ \ Interconnect |
T o4y 44
equal
xor pass
zero
y Exit Condition y \ >
\ Interconnect |
Output Registers :
Write Enable

Figure 5.13. SRA instance for two hypothetical Medalocks.

5.5.4 Folded CGRA (1D CGRA)

For Megablocks with many operations (e.g., seManalddreds), it can be impractical

to implement all operations at the same time irdare. The Folded CGRA (Figure

5.14) is composed of a single row of reconfigurdbles and multiplexes the execution

of each row over time. If the Folded CGRA is capabf changing its configuration

73

every clock cycle, and one does not consider mipwji its execution becomes
equivalent to a general 2D CGRA (see Section 5&nt) can use the same equations
for modeling.

A Folded CGRA can be useful for a resource-cons#ghienvironment, when
compared with the previous architectures, andanisdequate option for implementing

large Megablocks.

; Y A \ A
@) > Output
o Interconnect A
3 Registers
=
c
o] Y y Y y ¥ Y y A
o Py Write Enable
; LD/ST| |LD/ST FU 1 FU2 |- FUN %
e 1 M =
b .
. Iteration
Exit Condition Control

Figure 5.14. General architecture for a Folded CGRAbased RPU which supports Megablocks.

5.6 Megablock Pipelining

When mapping loops to 2D CGRAs, one can signifigamhprove performance
(throughput and latency) by pipelining the iteraioof the loop [48, 103, 104]. The
main idea is to overlap consecutive loop iteratiauingle preserving data-dependences
and resource constraints. There are several waygipine loops. The compiler
community, which traditionally addressed GPPs, us#tvare pipelining techniques
[49], being modulo scheduling [103] one of the ploiesschemes. In the context of
hardware synthesis (e.g., high-level synthesisp Ippelining is also known as loop
folding [115] and it has been addressed by sewertdlors (see, [48, 104], just to name a
few). To the best of our knowledge, most approachss the iterative modulo
scheduling algorithm proposed by Rau [103]. As witpical loops, Megablocks can
also be accelerated by pipelining their iterations.

In this section we present a technique to pipdieeiterations of Megablocks. The
technique moves inter-iteration dependencies froenNegablock body to a separate
module (i.e., the Input Module). The Megablock k#rbecomes a data-flow graph

which can be fully pipelined. The input module @t pipelined and is responsible for

74

feeding the Megablock kernel. We present a studgxpected performance gains after
applying this pipelining technique through estimatimodels, and suggest hardware
extensions which enable Megablock pipelining in #maged 2D CGRAs (see Figure

5.11), as well as specialized architectures, ssdh@SAr (see Section 5.5.2).

5.6.1 Inter-lteration Dependencies

The data dependencies [29] in Megablocks can hgpgabinto two types: direct and
indirect dependencies. Direct dependencies are digiandencies between operations
which are explicitly represented in the Megablotkey are exposed in the Megablock
graph representation by data connections. Feedb@uhections are data connections
between values of different iterations, and repredeect inter-iteration dependencies.
Indirect dependencies are not explicitly represntand usually correspond to
operations which manipulate data in a medium eatexmthe processor (e.g., memory
accesses).

To pipeline Megablocks, we propose a technique ithaapable of handling direct
inter-iteration dependencies, by moving them tcsiolet of the Megablock body, and
that can be applied to Megablock without indireter-iteration dependencies.

Consider the C code for the functiasrecsumin Figure 5.15, which sums the
elements of an array. Figure 5.16 shows the rappatttern of a Megablock found in
the execution trace in a MicroBlaze processor 8@ program which uses the function
vecsum and Figure 5.17 represents the same Megabloek gaaph, according to the
representation introduced in Chapter 4, Section Ailv addk MicroBlaze instruction
with address 18C adds the contents of registertBe@ontents of register 4, and stores
the results back to register 3. The next instragtecsw instruction with address 190, is
a store operation. It sums the contents of regi&teith the contents of register 9, and
the result is the memory address where the cownferggister 3 will be stored. As the
previous instruction alters the content of regisBerwhich is needed by thisw
instruction, there is a direct dependency betwaesé two instructions, on the content
of register 3. This dependency is representeddarMagablock graph representation as a
data connection between the nédadd and7:store

The first instruction, thdw instruction with address 180, reads the contefits o
register 9. As this register was lastly writtenthg addik instruction with address 19C

in the previous iteration, there is a direct interation dependency between these two

75

instructions. This dependency is represented ingifa@h as a feedback connection
between the node0:addand the input nodeé (input).

void vecsum(int* A, int* B, int* C, int n)
{

inti;

fori=0;i<n;i++) {

CI[i] = A[i] + BJi];
}
}
Figure 5.15. C code for asecsum function.
0x00000180 Iw r3, r5, r9 - 0:add
1:load
0x00000184 Iw r4, r6, r9 - 2:add
3:load
0x00000188 addik r10, r10, 1 - 4:add
0x0000018C addk r3, r3, r4 - 5:add
0x00000190 sw r3, r7, 19 - 6:add
7:store
0x00000194 rsubk r18, r10, r8 - 8:rsub_carry
0x00000198 bneid r18, -24 - 9:equalZero
0x0000019C addik r9, r9, 4 - 10:add

Figure 5.16. Assembly instructions of the repeatingattern of a Megablock found in the trace of
vecsum running on a MicroBlaze processor, and their correpondent translation to operations to be
mapped to a CGRA.

The Iw instructions with address 180 and 184 read valuesy the memory
addresses given by the sum of the content of exgdsand the content of register 5 and
6, respectively. Thew instruction with address 190 writes the contentegfister 3 to
the memory address given by the sum of the comkenegister 9 and the content of
register 7. Depending on the values of registe6 and 7, these instructions can be
reading and writing to the same memory positiothin same or in different iterations.
If a Megablock contains instructions which write t@emory, there might be indirect
dependencies. Because registers can have any atudependency is not tied to the

registers we use, but on the addresses accesseatbriyimstructions will be dependent

76

if at any point in the Megablock, a write operatioas the same target address of a

previous or a subsequent read operation.

eedback (0) 0:1 /0:1

10:add

Figure 5.17. Graph representation of the repeatingattern of the Megablock found when executing

vecsum.

We focus on the pipelining of Megablocks with sfieccharacteristics. We will
show later on (see Chapter 6, Section 6.4) thaetlobaracteristics/constraints will not
prevent us to pipeline most of the Megablocks ex#h from the set of benchmarks
used in this work. Specifically, we consider Megalils which an analysis can
determine to have no indirect inter-iteration degmcties. This information implies
memory disambiguation techniques, and can be pedvieither by a compiler, or
extracted from the Megablock.

A Megablock does not have indirect inter-iteratt@pendencies if we can guarantee
that: 1)storeoperations are executed according to their originder; 2) the contents of
the addresses accessed lbgd operations are not changed during the Megablock.
Guarantee 1) implies a mechanism for serializing themory writes, and can be
enforced when mapping the operations to the haelwenis guarantee avoidsitput

dependenciebetween memory writes. Guarantee 2) is dependethe program and

77

compiler options. If guarantee 2) holds, the valaesessed by load operations are
immutable, avoidingtrue dependenciesand anti-dependenciesbetween memory
operations. This guarantee can be achieved whegrgms use separate memory
regions (e.g., occurring with non-overlapped arydgs reading and writing values.
This information can be given to the compiler il using theestrict keyword of
the C99 standard when declaring pointers [116¢a0r be determined in some cases by
alias analysis techniques.

As guarantee 1) can be enforced by the mappingepasonly have to ensure that
Megablocks respect guarantee 2). As an examplesainee code in Figure 5.15, which
originated the assembly instructions of Figure 5d46d the Megablock graph
representation of Figure 5.17, uses different arréyr reading and writing, thus
respecting guarantee 2). We assume that this isfitomis given by the compiler as

additional information. It can also be discovergdahalysis of the Megablotk

5.6.2 Architecture for Pipelined Megablocks

Figure 5.18 shows two general RPU architecturegipelining Megablocks. The
architecture in Figure 5.18b) is a specializatidrth® architecture in Figure 5.18a),
when considering Megablocks without memory accesBeth architectures have an
Input Module (IM) and a Loop Module (LM). The artdature with support for
memory operations (see Figure 5.18b)) includesoaeStlodule (SM) and load units
inside the LM. Both architectures execute iteratiatomically, i.e. iterations are either
fully executed or discarded. An iteration is disteat when it activates an exit point.
When an exit point is activated, the Megablock etea ends.

The LM is a pipelined dataflow implementation oé thlegablock repeating pattern
(can be thought as the kernel), where the Megabledplit into several stages (see
Figure 5.19). Each stage executes a differenttiteraf the Megablock, and when the
LM advances a step (which can take from one toraéetck cycles, depending on the
Megablock and its implementation), all stages eteesimultaneously.

® Note that this is not focused on this thesis. Hmweas an example: in this case, the value of
register 9, which is used by the three memory dimrs, does not change between the loads andahe st
operations. If we know the values of r5, r6 andw&,can calculate the minimum distance between the
load and the store operations. If the minimum distais D, this means that we can overlap up to D
iterations, which will determine the maximum numbsrthe pipeline stages we can have without
incurring in indirect dependencies.

78

IM ;
' IM
Load | y
Load | L
LM
y
SM
a) RPU with memory operations b) RPU without memory operations

Figure 5.18. General blocks for Megablock pipeline@xecution.

IM IM IM
Stage 1 Iteration 1 Iteration 2 Iteration 3
Stage 2 - Iteration 1 Iteration 2 LM
Stage 3 - - Iteration 1
Step 1 Step 2 Step 3

Figure 5.19. Execution of an LM with three stages.

An iteration completes when it finishes executinrhe last stage of the LM without
activating exit points. All exit points are delaysd that when they are checked, the
corresponding iteration is in the last stage. Aftling the pipeline (step 3 in Figure
5.19), the LM completes an iteration per step. @waace a step, the LM needs the
values generated by the IM. The IM is responsiblegenerating the set of inputs for
each iteration, and only depends on the valuesrggtein the previous step of the IM.

This approach includes a module fstore operations (i.e., SM) to implement
guarantee 1) for indirect dependencies §tereoperations have to be executed by their
original order). Since the LM executes operatiohdifferent iterations simultaneously,
the dore operations are moved outside the LM, i.e., to @M. This way, allstore
operations are delayed to just after the last stAge SM only execute if no exits are
activated for that iteration, avoiding speculativetes to memory. The SM depends on
the results of the LM.

79

According to guarantee 2) for indirect dependendasd operations are done from
immutable locations. This means thaad operations can be done in any order, and
remain inside the LM. However, in this case the siEthe LM only finishes after all
load operations complete.

Table 5.3 summarizes the execution dependenciegebetthe modules of the
pipelined RPU. Figure 5.20 shows two schedulesii®rexecution of the pipelined RPU
with memory accesses. Figure 5.20 a) presentdehdysstate of the simplest execution
schedule for the modules, which is to execute tloelules sequentially. However,
according to the dependencies, the IM only dependss previous values, and as soon
as it finishes execution, it can start computing #alues of the next iteration. If we
overlap the execution of the IM with the remainimgdules, we obtain the schedule

presented in Figure 5.20b) to d).

Module Depends On Results From
IM (Input Module) IM of previous iteration
LM (Loop Module) IM of current iteration
SM (Store Module) LM of current iteration

Table 5.3. Dependencies between the modules of pglined RPU.

The IM execution is split in two parts executed @aamently, IM-A and IM-L. IM-A
refers to the execution of arithmetic and logic ragiens (e.g., addition, subtraction).
IM-L corresponds to the execution of load operatidn this model store operations are
not allowed in the IM. The IM is split in these twomponents as in real-life systems
the number of concurrent memory accesses is usually limited, and when the IM
execution overlaps with the execution of the remmginmodules, they will compete for
the same limited resources. We consider that tleewtion of the IM associated to the
load operations (IM-L) does not overlap with thenegning modules (LM and SM),
which can also have memory operations. The LM caveha similar decomposition,
LM-A and LM-L, where the arithmetic and logic commamnts execute concurrently with
both the IM-A component and the memory related camepts, in a third overlapping
level. As the LM is pipelined, the arithmetic-logoart usually executes within one
clock cycle, and the load operations representaihgest execution part of the LM. For

simplicity’s sake, this decomposition was not cdesed.

80

IM-A(stages)

‘ IM(step) —LM(step) — SM(step)

IM-A(L)

IM-L(1) IM-L(stages) —» LM(stages-1)
RPU lIteration
RPU Iteration
a) Sequential — Steady State b) Overlapping - Prologue
IM-A(step+stages)
IM-L(step+stages) — LM(step+stages-1) = SM(step) LM(stages+iterations)
RPU Iteration RPU lteration
c) Overlapping — Steady State d) Overlapping — Exit Iteration

Figure 5.20. Possible schedules for the modulesapipelined RPU.

The sequential schedule also has a prologue stafjaraexit iteration, identical to
the ones for the overlapping schedule, but withbeatoverlapping of the arithmetic and
logic operations. The RPU without memory accesses gimilar schedules, which do
not include the SM.

Software pipelining algorithms usually considerralpgue, a steady state, and an
epilogue. The purpose of the epilogue is to ordemtgninate the execution of iterations
which cannot execute in the steady state beca@se #re no more new iterations to
feed the pipeline. Our approach does not have #ogep. Since we commit iterations
atomically, we can simply ignore the iterations gthhave already started but have not
yet terminated by the time an exit is activated.

Figure 5.21 shows the execution of the RPU modwlesn using an overlapping
schedule, and considering that the LM has thregestand executes for two iterations.
In the first step, the IM is the only module exéegt In the second step, the results
from the first step of the IM are ready and both finst step of the LM and the next step
of the IM can start concurrently. The SM does n@caite yet because it uses data from
the last stage of the LM. At this point, the fitglration is in the first stage. As we are
considering an LM with 3 stages, there is no datalable in the third stage yet. When
the first iteration executes in the last stagehef LM, the pipeline becomes full, and
after execution, the SM can perform the storesheffirst iteration and complete it.
Each following step of the RPU completes an iteratin the last step, the Megablock

exits. As the stores of that iteration are neitperformed nor the inputs of the next

81

iteration are needed, the execution stops aftepating the results of the exit signals of
the LM.

Prologue Steady State Exit Iteration
IM-A(1) | IM-A(2) IM-A(3) IM-A(4) IM-A(5)
IM-L(1) | IM-L(2) > LM(1) | IM-L(3) > LM(2-1) | IM-L(4) > LM(3-2-1)—> SM(1) | IM-L(5) -» LM(4-3-2) -» SM(2) | LM(5-4-3)
LM Stages = 3 First lteration Second lteration
Iterations = 2

Figure 5.21. Execution using an overlapping schedeilwith an LM with 3 stages.

Equations (5.5) to (5.9) define the term RpOf equation (5.2) for the sequential
and overlapping schedules, respectively, of thelpipd RPU with support for memory
accesses. The term LI\ represents the number of stages in the LM, while N
represents the number of completed iterationsariMbgablock.

The sequential schedule equations (5.5) and (bi@ider an RPU with and without
memory accesses, respectively. The terms IMojvd-M-Avgcy and SM-Avgy
represent the average clock cycles needed to execsiingle step of the IM, LM, and
SM, respectively. LM-Lasg}, represents the clock cycles needed to executiashstep
of the LM in the exit iteration.

In the overlapping schedule equations (from (5076t9)), the terms IM-A(gy, IM-
L(i)cy , LM(i)cy and SM(i}t,. represent the clock cycles needed to completstdpe of
the corresponding module. Equatigas8) and (5.9) consider that each module always
executes in a fixed number of clock cycles represkby the terms IM-4, IM-Lcy,
LMcy and SMy,.

Usually, the latency of the LM is determined by thtency of the load operations.
As the LM is pipelined, an LM without load operat®owill have the shortest step
between all modules (usually one clock cycle).his tase, the IM latency becomes the
dominant term. Considering the overlapping schedatBout memory accesses, this
means that th®ax operation in equation (5.9) can be in most caisegldied to IMcy.

Equations (5.10) and (5.11) estimate the numbetouk cycles needed by the RPU,
for sequential and overlapping schedules, when klegks have a large number of
iterations, well above the number of stages oflilke These equations are useful for
comparing the performance of both schedules, anddiculating maximum theoretical

speedup limits when comparing with non-pipelinedgist@ock implementations.

82

5.6.3 Megablock Pipelining Algorithm

Consider the Megablock graph representation inreigul7. As referred before in
Chapter 4, Section 4.4, feedback connections imthph representation can only point
to nodes of the typkivein, and indicate the value that the input will hamethe next
iteration. They represent tiger-iterationdirect dependencies

Using the feedback connections we can extract xpeessions which control the
value of the inputs in the subsequent iteratiorntsrti@g at alivein node with a
feedback connection, traversing the graph in theospe direction of the connection
will reach the node that generates the input véduehe next iteration. The algorithm
buildExpressionGraphn Figure 5.22b) creates, given a node, a diregtegph which
represents the expression that calculates the svaluthat node. For instance, following
the feedback connection in nod (input), the values of th&ivein are given by the
output of the nodd0:add. Applying the algorithmbuildExpressionGraplto this node
will initially build a new graph. As it is the fitstime the algorithm sees the node
10:add this node is added to the graph. This node isp@ration, so the algorithm is
called recursively over each of the parent nodeth@fnodelO:add All the inputs of
this node are either of typavein or Constant so after they are added to the graph, the
algorithm stops. The algorithm returns a graph Wwhigpresents the update expression
for r10 (input) which in this case i89 = r9 + 4. The algorithm process to the next
Livein node with a feedback connection (irdQ) and repeats the process. As this is the
lastLivein node with a feedback connection, there are no mqpesssions to extract.

In our pipelining technique, the algorithbuildinputModuleGraph(see Figure
5.22a)) is applied over the original Megablock drap extract thenputModuleGraph
which represents the IM (see Figure 5.23). Thiplgria built by generating a graph for
eachinput node which has a feedback connection, and metbmgesulting graphs in a
single graph. This graph represents the hardweuretste responsible for generating the
inputs for each Megablock iteration.

As thefeedbackconnections from the original Megablock graph (Begure 5.17)
are being handled by the IM, when implementing lthé those connections can be
ignored. Additionally, as our technigue moves ttegesoperations to outside of the LM,
those operations are also removed from the grapdé.s€heduling of the resulting graph

represents the LM. In Figure 5.24 we present adidbeof an LM graph using an “As-

83

Soon-As-Possible” (ASAP) based scheduler [117jesults in a 3-stage pipeline. The
SM is composed by the single store operation oMbagablock.

When implementing the pipelined Megablock, the atgpf the IM are connected
to the inputs of the LM, and the values neededhleystore operations are passed from
the LM to the SMInput nodes which do not have an incoming feedback cdfamedo

not change their value during loop execution anadatoneed to be updated.

RpuMemg, = (IM-Avgc, + LM-Avgc,) X (LMstg + Nyp — 1) + SM-Avg,

(5.5)
X NIt + LM'LaStCy
RpuNoMemg, = (IM-Avgc, + LM-Avgcy) X (LMggg + Nyp — 1)
5.6
+ LM-Lasty (5-:6)
RpuMemVarc, = Max(IM-A(i)cy, IM-L(i)cy)
LMsig
+ Z Max(IM-A(i) ¢y, IM-L()cy + LM(i — 1)¢y)
i=2
Nit (5.7)
+ Z Max (IM-A(i + LMseg) , IM-L(i + LMseg)
i=1
+LM(i + LMgig — 1) + SM(i)cy) + LM(Ny + LMstg)..,
RpuMemFixedc,
= Max(IM-Acy, IM-L¢y) + Max(IM-Acy, IM-L¢y, + LMcy)
5.8
X (LMstg — 1) + Max(IM-Agy, IM-L¢y + LMcy + SMcy) (©-8)
X Ny + LMy
RpuNoMem-Fixedc,
= IM-A¢y + Max(IM-Acy, LMcy) X (LMgtg + Ny — 1) (5.9)
+ LMy
RpuSequentialg, = (IM-Angy + LM-Avgc, + SM-Angy) X Nyt (5.10)
RpuOverlappingc, = Max(IM-ACy, IM-L¢y + LMy + SMCy) X Np¢ (5.11)

Let us consider the IM in Figure 5.23. In this casehave an IM without loads (IM-
Lcy is 0) which can be executed in one clock cycle-Ad, is 1). The LM (see Figure
5.24) has three stages (kMis 3), and if we only consider the arithmetic dadic

84

operations, the maximum number of clock cyclesagesineeds is one. If we admit two
simultaneous loads per clock cycle, and with loatts one clock cycle latency, the
maximum number of clock cycles a stage needs, gakito account memory accesses,
is one (LMy is one). If we admit one clock cycle for the staency, the store module

needs one cycle per step (§Nbk one).

bui | dI nput Modul eG aph(megablock)
megablockDfg = createDfg(megablock)
for each input of megablockDfg
i f input has feedback connection

sourceNode = feedback parent
inputDfg = buildExpressionGraph(sourceNode)
add inputDfg to inputDfgList

end for

inputModuleGraph = mergeDfgs(inputDfgList)
a) Algorithm buildinputModuleGraph

bui | dExpr essi onG aph(sourceNode)
i f (sourceNode already added)
return
el se

add sourceNode

i f (sourceNode type is constant)
return
i f (sourceNode type is livein)

return

f or each parent of sourceNode
buildExpressionGraph(parent)

end for

b) Algorithm buildExpressionGraph

Figure 5.22. Algorithms for IM graph creation.

Let us consider a sequential scheduling. As we hmgeory accesses, equation
(5.5) is used. In this case, the step in all maglhies a fixed number of clock cycles, so
the average number of clock cycles is the sambeasumber of clock cycles to execute
a module. If the loop executes for 100 iteratiaghe,number of clock cycles of the RPU
executionis (1 + 1¥ (3 + 100 - 1) + X 100 + 1 = 305 clock cycles.

85

If we use an overlapping scheduling instead, andhasmodules have a fixed
number of clock cycles, equation (5.8) is usedhdf loop executes for 100 iterations,
the number of clock cycles of the RPU executiom&(1, 0) +max1, 0 + 1)x (3 - 1)
+max1, 0+ 1 + 1)x 100 + 1 = 204 clock cycles. This results in a dppeof 1.4%
when comparing the latency of the overlapped sdeealter the sequential schedule, in

this case.

T @3e1s

r9 (next) r10 (next)

Figure 5.23. Input Module (IM) graph for a Megablod found in vecsum.

wn

~+

0:add 2:add 4:add 6:add 10:add %
=

%

1:load 3:load 8:rsub uﬁ
N

9:equal =

) ‘equa Y]
5:add Zero Un?
w

Figure 5.24. Loop Module (LM) schedule for a Megalack found in vecsum.

5.6.4 Hardware Support for Megablock Pipelining

Consider the general architecture, for a 2D CGRAhwWegablock support,
depicted in Figure 5.11. To enable our Megablogelming approach in such CGRAs,
we propose three hardware extensions presentadunefs.25: (a) feedback lines to the
top row, for the IM; (b) clock-enable control sigméor each module; and (c) delays for
the exit signals. The extensions enable the impiatien of the IM, the LM, and the
SM at the hardware level. The same extensions aanagplied to specialized

86

architectures, such as the SAr (see Section 58h@)the SRA (see Section 5.5.3). For
simplicity, the CGRA in Figure 5.25 only has threevs.

v ¥ ¥ v ¥
» Interconnect
=)
il
5 Y v \ B Y Y Y v Y v e
©
a) g LDiST LD,\;ST FU1 FU2 || FUN s
o c) Q
£ N B B [——m £
y A Y y ¥ Exit Condition
Interconnect
L] _____ ___ _ T__1 ___ G —
y v \ R A y v &
g —
LO/SH . (LOR | rydl FU2 || FUN o| 8
’\ 1 M =) ke
— [[[[§ — e 8| £
\J Y Y ¥ Y Exit Condition g
Interconnect ®
Yy Vv \ A \ A Yy Vv Yy Vv
99}
DS . | D FU1 FU 2 FUN 5]
1 M P
— ’\ [[[[[y T S
tl/ Y Y Y 4 y Exit Condition g.
§§§ Interconnect)
233 | | | | |
Step v \j v v v
Controller | P)

Figure 5.25. General architecture for a 2D CGRA-basd RPU which supports Megablocks and
Megablock pipelining.

The feedback lines (a) are needed for the IM maaitation. This kind of
interconnection can be expensive, but as only Ilgadules with a low number of
stages are attractive for implementation, theseslican be present in only a restricted
number of top rows. As the modules have producasamer relationships between
them, we use a Step Controller (b) to indicate wineme are values available for each
module, and when they can execute. The exit d€l@ysynchronize the exit signals so
that when they activate, they always correspontheoiteration in the last stage. They

can be implemented with simple 1-bit FIFOs.

87

5.7 Summary

This chapter focused on the practical aspects oiguglegablocks. We explained
how to transform assembly instructions into the M#gck graph representation. We
proposed and compared two techniques for idengfyreviously detected Megablocks
in a trace: Single Address Identification (SAl) adégablock Signature ldentification
(MSI). We described RPU architectures able to iiiglet Megablocks

Finally, we explored the possibility of pipelininglegablocks in hardware, by
suggesting techniques to handle the inter-iterafigmendencies, as well as architecture
augmentations to support Megablock pipelining. Tachnique is appropriate for loops
where the operations related to the update of galised across iterations represent a
small part of the loop and can be executed witreloatency than the complete loop.

88

6 Experimental Results

This chapter presents extensive results aboutdtieniques introduced in the previous
chapters, such as characterization of Megabloclerage, and experiments considering
several scenarios regarding Megablock mapping @a&seline resultsf-conversion graph

transformations) and pipelining of Megablocks.

6.1 Experimental Setup

We consider the general architecture describedeicti® 5.5, with an Reconfigurable
Processing Unit (RPU) coupled to the General P@poscessor (GPP) as depicted in Figure
5.10b). We use a MicroBlaze soft-core [90] as Hrgdt GPP, optimized for speed. The GPP
communicates directly with the RPU through FSL cantions [118]. We use a Xilinx
Spartan-6 LX45 FPGA as the target FPGA platform tfee implementation of hardware
designs.

To evaluate our approach, we use a set of 66 bear&isnusing integer data types from
embedded computing (the benchmarks are availabieeofil19]). We usemb-gcc4.1.2
[120], the GCC compiler targeting MicroBlaze. Byfaldt, the optimization level flag is set
to —OZ. The 66 benchmarks were separated in two setediésrandno-ifs according to the
existence or non-existence of control-flow relatedstructions (e.gif statements in C code)
in the kernels, respectively. Tlfs set contains 29 benchmarks andrtbeifs set contains 37
benchmarks. Table 6.1 and Table 6.2 present aabkaration of the benchmarks that form
the no-ifs andifs sets, respectively. Column “Kernel LOC” indicatee number of lines of
code that compromise the benchmark kernel, exaudiomment and empty lines. The
kernels contain a wide range of code sizes, franpks to complex examples. The lines of

code vary between 6 and 241 in tiwifsset, and from 9 to 226 in tlis set.

"It has been observed that unoptimized code is reasker to schedule than optimized code [15]. Altio
it is not guaranteed that all the binaries runranghe system have been compiled with optimizatiarsopted
to use compiler-optimized programs when evaluasittgeduling algorithms by default.

89

Max. Loop

#Input/output

Benchmark Kernel LOC #loops

nesting level arrays
Autcor 15 2 1 1/1
Bilinear 190 1 0 2/1
bob_hash 16 1 0 1/0
Checkbits 31 1 0 1/1
Checksum 103 1 0 1/1
compressl 15 1 0 0/0
compress2 20 1 0 0/0
corr_gen 17 2 1 2/1
Count 1 0 0/0
Dotprod 1 0 2/1
even_ones 9 1 0 0/0
Expand 14 1 0 0/0
fdct_8x8 241 4 1/1
fft 39 3 2 2/1
fibonacci 26 1 0 0/0
fir 16 2 1 2/1
gcd2 16 1 0 0/0
gouraud 12 1 0 0/1
hamming_dist 11 1 0 0/0
lookup2 55 1 0 1/0
maxstrl 6 1 0 0/0
maxstr2 25 1 0 0/0
md5 173 1 0 1/1
mulinv 18 1 0 0/0
perlins 96 1 0 1/1
pix_expand 12 1 0 1/1
popcmpr 20 1 0 0/0
popcnt 12 2 1 1/1
quantize 42 2 1 2/1
reverse 10 1 0 0/0
smooth 23 4 3 1/1
vecsum 10 1 0 2/1
wave_horz 31 4 2 3/1
wave_vert 40 4 2 3/2
ycbcrd22p_rgb 148 1 0 3/1
yc_demux_bel6 22 1 0 1/3
yc_demux_lel6 22 1 0 1/3

Table 6.1. Characteristics of the benchmarks whicform the setno-ifs.

90

#Ifs

Benchmark Kernel inside Ifs ng #Invo.ked #loops Ma>§. Loop #Input/output
LOC loop Nesting Functions nesting level arrays
adpcm_coder 67 9 1 0 1 0 1/1
adpcm_decoder 52 6 2 0 1 0 1/1
boundary 18 1 0 0 2 1 1/2
bubble_sort 14 1 0 2 1 1/0
change_brightness 24 1 1 0 1 0 1/1
compositing 12 2 0 0 1 0 2/1
conv_3x3 81 2 0 0 2 1 2/1
cre32 15 1 1 0 1 0 0/0
diviu 16 1 0 0 1 0 0/0
gcdl 15 1 1 0 1 0 0/0
idct_8x8_12qg4 226 16 1 0 4 1 1/1
isqrtl 21 4 0 0 1 0 0/0
isqrt2 16 1 0 0 1 0 0/0
isqrt3 17 1 0 0 1 0 0/0
isqrt4 18 1 1 0 1 0 0/0
mad_16x16 36 1 0 1 4 3 2/1
mad_8x8 35 1 1 4 3 2/1
max 9 1 0 0 1 0 1/0
median_3x3 82 13 0 0 1 0 1/1
modexp 11 1 0 0 1 0 0/0
motion_estimation 22 0 0 1 4 3 2/1
perimeter 35 1 1 0 1 0 1/1
pix_sat 24 1 2 0 1 0 1/0
rgb_to_hsv_int 57 9 2 0 1 0 3/1
g 177 7 1 0 1 0 1/1
sad_16x16 17 0 0 1 2 1 1/1
sad_8x8 17 0 0 1 2 1 1/1
sobel 51 1 0 2 1 0 1/1
viterbi_gsm 37 1 1 0 4 2 3/2

Table 6.2. Characteristics of the benchmarks whicform the setifs.

Columns#loopsandMax. loop nesting levehdicate the number of loop constructions in
the code (e.gfor andwhile statements), and the maximum nesting level ofldbes. All
examples contain at least one loop construct, apst irenchmarks do not have nested loops
(27% and 34% of the benchmarks in tieifs andifs sets have nested loops, respectively).
Column#lnput/output arraysndicate the number of arrays which are used astiroutput of
the kernel. In most cases, the benchmarks eitteeonis array for input values and another for

output values, or do not use arrays at all.

91

Table 6.2 includes three additional columns. Thieirmoo #Ifs inside loopindicates the
number of control-flow constructions (e.d.,statements) found in the source code (ofdy
inside loops are accounted for), while the colufenrmax nestingndicates the maximum size
of anif statement chain. The coluninvoked Functionsndicates the number of times the
benchmarks call an external function. This behawias found only in a reduced number of
benchmarks of this set, beingabsthe only function called in those benchmarks.

All benchmarks use initialized input data. The ihatrays are declared as global variables
with static initializers to minimize the impact dhe initialization when running the
benchmark. The arrays are initialized with randaatuegs, with well-defined seeds to ensure
the repeatability of the experiments. The totalcexien clock cycles of the benchmarks,
when executing in the MicroBlaze considered for ezkpents, vary between 10,000 and
1,000,000 clock cycles.

For the speedup estimations concerning the Megkslege used the instruction latencies
of a MicroBlaze processor optimized for speed (efindd in the MicroBlaze Reference
manual [90]), for the equivalent operations of thiermediate representation. We consider
that the program data fits in the FPGA Block RAB&RAMS), thus enabling loads and stores
to memory to be done in one clock cycle [121], awel consider, as default, that up to 2
simultaneous memory accesses can be done in ook clele (this setup fits well with
embedded devices, e.g., the dual-port BRAMs foundFPGAs [122], and memory
architectures of DSPs [123]).

We used the tool Megablock Extractor (see Figuiea)Cand Figure C.1b) in Appendix C)
to extract the Megablocks from the executable lesarand the tool Megablock Estimation
(see Figure C.2a) and Figure C.2b) in Appendixa®imulate an architecture which supports
the extracted Megablocks.

For the hardware implementations of the Megabloaks, used the tool VHDL for
Megablocks (see Figure C.3 in Appendix C) to geteethhe hardware modules, and Xilinx
ISE 12.2 to obtain synthesis and placement andngugsults.

6.2 Megablock Coverage

The coverage of a detection method over the exatuwf a program is an important
measure, as it indicates an upper bound of thedimga RPU can have (Section 4.1). To

measure the coverage of the Megablock, we considdreee adjustable parameters of

92

Megablock detectionmaximum pattern sizeype of pattern uni{the considered units are
instruction, basic block and fragment) amtrolling of inner loopsTo maximize the number
of detected Megablocks, the paramebeecuted instructions threshaklset to 1 (see Section
4.3). The proposed identification methods (seei@ed.4), Single Address ldentification
(SAIl) and Megablock Signature Identification (MSl)can have an impact in the coverage
and we also take it into consideration. We alsacete the detection ratio, i.e., in how many
benchmarks we can detect at least one Megabloolkei@ge greater than 0%).

Figure 6.1 shows the average coverage obtained whigny the Megablock detection
considering several values for the parameters ibestabove. The coverage results represent
an average over the coverage of all benchmarksydimg benchmarks without detected
Megablocks (coverage equal to 0%). For instancegnwhising the SAI method and no
unrolling of innermost loops, basic block as theedgon unit, and 8 as thmaximum pattern
size the average coverage achieved by the Megablowctien in the complete set of 66
benchmarks is 70%.

SAl/Unrolling Disabled SAl/Unrolling Enabled
100% 100%
80% 80% . R T . -
S el Y} L St e P
P — o 60% - &
60% > % ¢
./ ‘/v ao% ./ ‘/ﬁ
40% / i /
20%
20% /
N R v 0% -+ m—t— .
0% +— === ‘ ‘ " " " ‘ ‘ ! 1 2 4 § 12 16 24 32 48 64
1 2 4 8 12 16 24 32 48 64
a) b)
MSI/Unrolling Disabled MSI/Unrolling Enabled
100% 100%
80% 80% —
60% +— el ————— 60% _./._k . J‘g Mi
=) 40% -
40% | ‘/v——-v_—
20% / 20% /
4 ~
" R / 0% -+t : ; : ; : ; :
0% ‘ T ‘ T ‘ T ‘ T ‘ y 1 2 4 8 12 16 24 32 48 64
1 2 4 8 12 16 24 32 48 64 Maximum Units per Megablock
=§=instruction =l=basic block fragment
c) d)

Figure 6.1. Average coverage of the complete setlnchmarks when applying Megablock detection and

varying several parameters.

Figure 6.2 shows the ratio of benchmarks where Mieghs were detected (coverage

greater than 0%). In this set of benchmarks, uimglincreases the ratio of benchmarks with

93

detected Megablocks to close to 100% (see Fig@e &nd diminishes the differences when
using basic blocks and superblocks as units wharimum pattern sizes 24 or greater.
However, unrolling has a modest impact in the aye@verage (see Figure 6.1). The ratio of
benchmarks with detected Megablocks was already lugfore unrolling (around 90%), and
the coverage values of the new benchmarks are tod®e average. Unrolling increases the
average coverage by 3% in the best case.

SAl/Unrolling Disabled SAl/Unrolling Enabled
100% — - - _ . . 100% ‘/____,_:-_ . n s ey
80% ® & 80% — / ¢
60% l/ / 60% - " /
40% / 40% /
20%
~ — / —
N 0% ot T T :
0% T ‘ ‘ ' ' ‘ ‘ ‘ ! 1 . 4 s 12 16 2 3 as e
1 2 4 8 12 16 24 32 48 64
a) b)
MSI/Unrolling Disabled MSI/Unrolling Enabled
100% = ‘ - 100% e
80% ./" f :v 8 80% .//—-H— e
60% / 60% /
40% / 40%
o 4 /
20%
0% | = ‘ ‘ . . : : : , o e A//
2 4 8 12 16 24 32 48 64 5 4 e 12 16 24 32 a8 e
Maximum Units per Megablock
== instruction =fll=basic block fragment
c) d)

Figure 6.2. Megablock detection ratio in the compke set of benchmarks. Indicates the ratio of

benchmarks were valid Megablocks could be detected.

When compared with the SAI method, the MSI metlowdered the coverage in all cases.
The main reason comes from the additional overireite MSI method when compared with
the SAI method (it has at least an overhead of iter@tions per call, which are needed to
detect the Megablock).

In the other hand, in cases where there are mamfiyiate due to Megablocks having the
same start address, MSI can execute both, potgntiateasing the coverage. However, for
the tested benchmarks, on average the additiomahead outweighed this benefit.

With the SAI method, the average coverage whengusasic block and fragment units

converged rapidly, at a value ofaximum pattern sizef 4. However, to obtain Megablock

94

detection rates close to 100% with basic blocksyritemaximum pattern sizeeeds to be
increased to 24 and unrolling must be enabled.

When using unrolling, in some cases the averagerage lowers with an increase in the
maximum pattern siz&his happens because when using unrolling, doatgrs with unrolled
inner loops are given a higher priority than isethinner loops. If the path of the outer loop is
not regular, the Megablock terminates sooner amdptetes a lower number of total inner
loop iterations than if the inner loop had been leamented instead of the outer loop.
Summarizing, unrolling can be counterproductivédo@mchmarks which do not form regular
execution patterns, and aggravates when the nuofbiéerations of the outer loop is low
(e.g., less than 10).

According to the obtained values, we decided to aisgefault setup for Megablock
detection, with anaximum pattern sizef 24%, and basic block as detection utifirolling of
inner loopsis considered as an optional parameter.

We have chosen the basic block as the default w@teanit as it is simpler to implement
than fragments, and maximum pattern of sizef 24 provides similar Megablock detection
coverage when using units either based on basok$®lor fragments.

Figure 6.3 shows individual coverage values forhelaenchmark, when considering the
default Megablock detection setup and an implentiemaof the Backward Branch Loop
Detection (BBLD) used in the Warp Processor [1225]1For the Megablock detection we
disabled unrolling of inner loops to provide a faimparison, as BBLD only supports inner
loop detection. The results in Figure 6.3 showawarage, higher coverage when using the
BBLD. This was expected, as the current Megabloekection trades-off the coverage
obtained when statically considering all paths ¢d@p, with having a loop which represents
an execution path. The advantage of having an éeecpath loop is that it forms a dataflow
representation suited for non-sequential computatimdels. Furthermore, we can apply
transformations which cannot be used, or that aneeroomplex, when considering loops with
branching code.

With respect to coverage, the results are highlyeddent on the benchmark. In some
examples the difference between coverage valudsgls (e.g., forisqrt, maxsty pix_sat

viterbi_gsm, and in some cases Megablocks are not identified., adpcm_coder

8 A runtime adaptation of theaximum patter sizaccording to the characteristics of the applicatimnning
on the system is not considered in this work.

95

I O O N
I O N R
I O O N
- T

| [T
I O O N
| R

||| [T
| [[T

m Backward Branch

W Megablock Default Setup

default setup and Backward Branch Loop Detection.

96

adpcm_decoderconv_3x3smooth. This happens with kernels of the benchmarksasnimig

t T
XXX R R R R

O © © © © © © o O O © O © © © o © © ©
S & ® N © n ¥ O & = S ® ® N ©wm ¥ O« o

branches, and not forming repeating patterns dwxagution.

Figure 6.3. Individual coverage values in the maiset of benchmarks, for Megablock detection using th

Other examples allow high Megablock coverage valadmve 80%, even when the
kernels have branches (e.ghange_brightnesgycd2 max lookup3d. In these cases, there
were one or more frequent paths representing nideeaxecution of the kernel. Megablock
coverage close to 100% usually represents benclsmdrich do not have branches inside the
kernel (e.g.,autcor, bob_hash compositing dotprod gouraud vecsum There are also
examples where the Megablock detection has higerege values, but the BBLD has very
low or 0% coverage (e.ghjlinear, checkbits checksummd5 perling. This corresponds to
kernels with loops above a certain size (i.e., sJyaindreds of instructions).

The objective of using Megablocks is to have a imatstructure better suited for
implementation in an RPU than the static represiemtaf the loop. However, the Megablock
is only useful if a substantial portion of the praxyp execution is spent inside Megablocks. In
this section we explored the Megablock coverage aveumber of detection configurations
and arrived at a default setup. The average cogaxalgieved by Megablock detection in the
main set of benchmarks when using the default setup0%, while about half of the
benchmarks achieved coverage over 90%, which qmnrels to an average overall speedup
upper bound of 38and 1& respectively. We consider that these resultsfyjuitie use of

Megablocks in a dynamic partitioning approach.

6.3 Megablock Mapping

We have developed tools which enabled us to stoeympact of using Megablocks in a
dynamic partitioning system. This section presextensive estimation results over several
configurations. We also have tested this approgdmplementing a proof-of-concept system
[126], whose presentation and results are avaiiabdpendix A.

We considered the default Megablock detection s@tapic block as thg/pe of pattern
unit, maximum pattern sizef 24), using the SAI method. When using SAIl, ¢hean be
conflicts if two Megablocks share the same stadresk. If there are address conflicts
between two or more Megablocks, the Megablock Wwitgher coverage is chosen, according
to an approximate coverage estimation performethguhe detection phase. The mapping of
memory operations respects the original order efojberations.

As target architecture we use the SAr architeatoresidering FUs with registered outputs
(see Section 5.5.2). The reason for choosing tiaisitacture is twofold. On a practical point

of view, among the presented architectures, this thva easiest to test and implement. On the

97

other hand, it is still possible to obtain resutteaningful for the other architectures. When

the results of each FU are stored in registereerSAr architecture, the latency of Megablock

execution (i.e., clock cycles) is equivalent to ldtency of the other architectures presented in
Section 5.5, including the General 2D CGRA (sedi&e&.5.1), the SRA (see Section 5.5.3)

and the Folded CGRA (see Section 5.5.4).

We considered three parameters which define thgetta®Ar architecture: maximum
number of concurrent memory operations, maximum bemof concurrent arithmetic-logic
operations, and the ratio between the clock frequenthe RPU and the processor.

For each set of benchmarks, we considered the eeses unrolling of inner loops is
disabled ihnerloopg or enabledynrolled). We considemnerloopsas the default parameter,
and present results with unrolling enabled fordases where there is any change. The values
are obtained with the tool Megablock Estimatione(¢egure C.2a) and Figure C.2b) in
Appendix C), which has support for an estimatorebdasn a SAr architecture (see Section
5.5.2) with registered results. In the speeduputalions we consider all communication

overheads.

6.3.1 Baseline Results

Table 6.3 and Table 6.4 present the characteristiche detected Megablocks with
innerloops for theno-ifs andifs sets, respectively. Table 6.5 and Table 6.6 ptabensame
characteristics found in thenrolled case. For the baseline results, all graph tramsftbons
proposed in Section 5.1 are disabled.

The Critical Path Length (CPL) and Instruction Lewarallelism (ILP) results were
calculated assuming there are no restrictions m tdrget architecture (e.g., unlimited
arithmetic, logic and memory operations per clogkl€) and that memory operations are
independent. These results indicate an upper botitite values that can be obtained when
implementing the Megablocks in practical architeesu We used a weighted average which
has into account the number of times each Megabaskexecuted.

98

senchmark__tedalodks A per g 0 g TP g L

autcor 1/1 159.0 13.0 2.6 5.0
bilinear 1/1 99.0 161.0 7.0 23.0
bob_hash 1/1 3999.0 11.0 1.4 8.0
checkbits 1/1 166.0 69.0 4.3 16.0
checksum 2/2 65.5 81.5 2.5(2.0/3.0) 27.5 (3/52)
compressl 1/1 29.0 8.0 2.0 4.0
compress?2 1/1 4.0 24.0 1.7 14.0
corr_gen 11 7.0 14.0 2.3 6.0
count 1/1 31.0 6.0 2.0 3.0
dotprod 11 2047.0 9.0 2.3 4.0
even_ones 1/1 31.0 6.0 2.0 3.0
expand 171 29.0 8.0 2.0 4.0
fdct_8x8 22 7.0 117.5 7.6 (7.4/7.8) 15.5 (15/16)
fft 3/2 11.0 34.3 4.9 (4.9/5.4) 7.0 (7/10)
fibonacci 1/1 2378.0 6.0 2.0 3.0
fir 1/1 3.0 11.0 2.2 5.0
gcd2 1/1 65.6 8.0 13 6.0
gouraud 171 1999.0 15.0 2.5 6.0
hamming_dist 11 31.0 6.0 2.0 3.0
lookup?2 1/1 499.0 49.0 2.2 22.0
maxstrl 212 1.9 7.3 1.9(1.3/4.8) 3.3 (3/5)
maxstr2 712 25 5.5 1.3(1.3/6.0) 4.1 (4/11)
md5 1/1 99.0 837.0 1.9 451.0
mulinv 1/1 17.1 12.0 0.3 36.0
perlins 1/1 1023.0 124.0 4.3 29.0
pix_expand 11 4999.0 8.0 2.7 3.0
popcmpr 11 8.4 6.0 15 4.0
popcnt 11 31.0 8.0 2.7 3.0
quantize 1/1 199.0 13.0 1.9 7.0
reverse 1/1 31.0 7.0 2.3 3.0
smooth 0/0 N.A. N.A. N/A N/A
vecsum 11 2047.0 11.0 2.8 4.0
wave_horz 2/2 7.0 16.5 0.4 40.5 (40/41)
wave_vert 22 7.0 12,5 2.5 (2.4/2.6) 5.0
ycberd22p_rgb 31 9.8 90.0 6.4 14.0
yc_demux_bel6 1/1 999.0 22.0 7.3 3.0
yc_demux_lel16 1/1 999.0 22.0 7.3 3.0

99

Table 6.3. Megablock characteristics for theno-ifs set, only inner loops.

—
adpcm_coder 0/0 N.A. N.A. N/A N/A

adpcm_decoder 0/0 N.A. N.A. N/A N/A

boundary 1/1 73.6 12.0 5.0 3.0
bubble_sort 211 6.8 9.0 25 4.0
change_brightness 3/2 10.2 11.0 2.6 (1.7/2.6) 5.1 (5/7)
compositing 1/1 199.0 18.0 2.0 11.0
conv 3x3 0/0 N.A. N.A. N/A N/A

CI’C32_ 0/0 N.A. N.A. N/A N/A

diviu 2/1 2.9 13.0 2.6 5.0
gcdl 2/2 16.4 5.0 2.2 (1.7/12.5) 2.4 (2/3)
idct_8x8_12g4 1/1 7.0 111.0 7.5 15.0
isqrtl 3/1 1.1 39.0 0.8 77.0
isqrt2 2/1 1.8 10.0 3.3 3.0
isqrt3 2/1 1.9 13.0 2.6 5.0
isqrt4 2/1 1.8 21.0 3.8 6.0
mad_16x16 1/1 15.0 13.0 1.8 8.0
mad 8x8 1/1 7.0 13.0 1.8 8.0
max_ 1/1 185.2 8.0 1.6 5.0
median_3x3 0/0 N.A. N.A. N/A N/A

modexp 1/1 2.0 12.0 0.2 70.0
motion_estimation 171 15.0 13.0 2.0 8.0
perimeter 11 78.7 19.0 5.3 4.0
pix_sat 2/2 2.0 12.0 1.9 7.0
rgb_to_hsv._int 51 12 57.0 17 38.0
rng 18/3 11 53.3 4.9 (4.8/4.9) 13.0
sad_16x16 1/1 15.0 14.0 1.8 8.0
sad 8x8 1/1 7.0 14.0 1.8 8.0
SOb;| 2/1 3.7 44.0 3.8 13.0
viterbi_gsm 1/1 1.6 49.0 8.1 7.0

Table 6.4. Megablock characteristics for théfs set, only inner loops.

100

Benchmark I pereal perh (i (i)
compress2 2/1 999.0 141.0 21 66.0
corr_gen 2/1 141.0 121.0 5.8 21.0
fdct_8x8 4/2 49.0 946.0 40.3 (39.6/41.0) 23.5 (23/24)
fft 6/2 11.0 34.3 4.9 (4.9/5.4) 7.0 (7/10)
fir 211 252.0 55.0 5.0 11.0
gcd2 2/2 46.6 10.1 1.3(1.3/1.7) 7.2 (6/103)
maxstrl 92 1.6 223 2.8 (1.3/3.6) 6.9 (3/9)
maxstr2 2712 25 6.3 1.3(1.3/5.1) 4.2 (4/114)
mulinv 10/2 2.2 77.8 0.3(0.3/0.4) 211.1 (36/632)
popcmpr 9/2 1.5 41.2 2.5(1.5/3.5) 13.1 (4/122)
smooth 211 29.0 155.0 7.4 21.0
wave_horz 412 49.0 1425 2.8 50.5 (50/51)
wave_vert 42 39.0 110.5 6.9 (6.6/7.2) 16.0
ycherd22p_rgb 4/1 9.7 90.0 6.4 14.0

Table 6.5. Megablock characteristics for thao-ifs set when applying unrolling.

Benchmark Megablocks Avg. It. Avg. Op. A_vg. ILP A_/g. CPL
Det./Exec. per call per It. (Min/Max) (Min/Max)
adpcm_coder 4/1 1.0 80.0 6.4 16.0
adpcm_decoder 9/1 1.2 64.0 6.7 12.0
conv_3x3 42 2.0 88.1 8.8 (7.0/19.8) 13.1 (13/14)
crc32 6/2 1.6 6.1 2.0(2.0/4.3) 3.0 (3/14)
idct_8x8_12qg4 211 49.0 868.0 36.5 25.0
isqrtl 9/2 1.3 229 0.3 (0.2/0.5) 82.2 (37/148)
isqrt3 8/1 1.9 15.0 3.0 5.0
isqrt4 42 1.6 22.9 3.9 (3.8/5.0) 7.1 (6/30)
mad_16x16 211 15.0 163.0 9.6 24.0
mad_8x8 211 7.0 83.0 7.4 16.0
modexp 73 20 12.7 0.2 (0.2/0.3) 70.5 (70/105)
motion_estimation 211 15.0 165.0 11.0 24.0
pix_sat 8/2 2.0 12.0 19 7.0
rgb_to_hsv_int 11/3 1.2 60.9 1.8(1.6/3.2) 38.3 (38/41)
g 15/3 1.1 53.3 4.9 (4.8/4.9) 13.0
sad_16x16 2/1 15.0 178.0 9.5 24.0
sad_8x8 2/1 7.0 90.0 7.3 16.0
sobel 8/1 3.7 44.0 3.8 13.0
viterbi_gsm 713 48 334 6.6 (4.3/14.3) 4.7 (3/8)

Table 6.6. Megablock characteristics for théfs set when applying unrolling.

The columnMegablocks Det./Execshows how many Megablocks were found in the

101

benchmarks, and how many of them could be used id#atification. When considering the

no-ifs set, in most cases only one Megablock is detetiadblling increases the number of
detected Megablocks in the affected benchmarksesglés the previously detected loops, it
will also detect outer loops with the inner loopsalled. Unrolling can detect loops in cases
where no loops are found when looking for only nto®ps (e.g., as ismooth. However,
this strategy is less effective when the numbeteoétions of inner loops is variable.

ColumnsAvg. It. per calland Avg. Op. per ltepresent the average number of iterations
per Megablock call, and the average number of d@recoperations per Megablock iteration,
respectively. The higher the number of iterationd the number of operations per iteration,
the longer the Megablock executes uninterruptedlyhe RPU, diminishing the impact of
communication overhead.

ColumnsAvg. ILP and Avg. CPLare a weighted average of the ILP and CPL of the
executed Megablocks, respectively. If the minimumd/ar the maximum value are different
from the average, they are presented between passay.

Considering thennerloopscase, the ILP of the Megablocks ranges betweera®d37.8
(average of 2.9) for theo-ifs set and between 0.2 and 8.1 (average of 3.0h&fd set. For
the same sets, the CPL ranges between 3 and 48&dagavof 22.2) and between 2 and 77
(average of 13.9). After unrolling, the average ibEreases to 4.3 and 5.7 and the average
CPL increases to 30 and 16.3, for tiweifs andifs set, respectively. Unrolling inner loops
creates larger Megablocks with larger CPL, which ttanslate to Megablocks which execute
uninterruptedly on the RPU for longer periods. Taeger ILP increases the parallelism
potential.

Some benchmarks have ILP below 1 (engu)iny, wave_horzisqgrtl, modexp. All cases
correspond to Megablocks which have high-latenatrirctions, such as integer division,
which take several cycles to finish execution (eag.integer division operation has a latency
of 32 clock cycles in the considered architecture).

Figure 6.4 presents upper bound speedups congdiniee scenarios: in the Megablock
(CPL based) scenario, the speedup is estimateddeonimg the CPL of the baseline graph of
the Megablock. This is equivalent to perform mappivith as many resources as needed. In
the Megablock (Zero Cycles) scenario, the executioe of the RPU is considered to be
zero, but considering communication overhead. Th{mesents the maximum theoretical
speedup possible with detected Megablocks. Thé $icenario considers that both the RPU

execution time and communication time are zero.

102

No-Ifs Innerloops

1000
o
3
o
ﬂl
GJ
Q
v
Ifs Innerloops
100
10
o
S
o
o
o
2
&
1
0.1
>
FFFSFEER IS TLLLE %& & & P KPS @.}% g
S OV SN N L LR R R N A & L& & O SIS
&7 ¥ & &S 7 > & PRGN S R S5 &L P
& 7 * T & ¢ S &L & & L or & &
K & Y S 57 & & & «§ g i
P & & ° S & Y
I3 & N XS R
& N
No-Ifs Unrolled Ifs Unrolled
1000 10
100 -
o
S
T 10 1
2
&
1 +
0.1 -+ o
QoS QO < L X O P & L& D0 XD 0 >0 9 Q. & &8 & v > <
FEF L LIS S E S S FEFCFLE ST T TS TS &
P K @7 2D & & o/ T TN SE SN Y T
O U S &7 S 8 o7 & i S o7 3 7
& & & &7 <) & & <9 &
s D il o7 o7 D
<X L $ Q\o &
&

M Megablock (CPL based) B Megablock (Zero Cycles) ® Megablock and Comm (Zero Cycles)

Figure 6.4. Upper-bound speedups in the baselinesmfor three scenarios: execution time of the RPU
is equal to Megablock CPL, execution time of the RP is zero and execution time of the RPU and
communication delays are zero.

Generally, benchmarks without branches in the Isbpw a much higher potential for
speedup. The average for the-ifsset is one order of magnitude above the averagiddafs
set. Unrolling can have a positive effect in sorh¢he affected benchmarks. There is a big

gap between the potential speedup when considarstgpightforward implementation of the

103

Megablock (CPL based) and the upper bound sce(i@ei@ Cycles). This gap suggests there

is ample head room for performance improving teghes (e.g., loop pipelining).

Figure 6.5 and Figure 6.6 present estimation spgeeduad Instructions Per Cycle (IPC),

when varying the number of available load/storgsuand the number of arithmetic-logical

units, respectively. In Figure 6.5, the mapping Wase using as many arithmetic-logic units

as needed; in Figure 6.6 we limited the numbermatcarrent memory units to two. The lines

represent arithmetic average values over the speadd overall IPC of each benchmark of

the set (in the sets where tinerolled option was used, we are considering all the beacksn

of the set, and not just the benchmarks where imgdiad impact).

3 _7&
25 —mr
L
—
1 2 3 4 5 6 7 8 &

a)

IPC

1\

Max. load/store units per line

=4=—n0-ifs =fll=no-ifs unrolled ifs e=<=ifs-unrolled

b)

Figure 6.5. Average a) speedup and b) IPC when vang the maximum number of load/store units per

row.

25 ‘/./.!_.—.—.—.'—.'_._._.
2 o—00—0 ¢ ‘ ¢ ¢ ‘ ‘ ‘

) aallll

Speedup
-
(%)

1 gw

a)

1 2 3 4 5 6 7 8 9 10 16 32 64 «

1 2 3 4 5 6 7 8 9 10 16 32 64 o
Max. arithmetic/logic units per line

====n0-ifs ==ll=no-ifs unrolled ifs e==ifs-unrolled

b)

Figure 6.6. Average a) speedup and b) IPC when vang the maximum number of arithmetic/logic units

per row.

104

In Appendix B, Section B-1, we present the resu#iig the geometric mean instead. In
this case, the curves maintain their relative pmss#t although the absolute value is lower,
and the gap between thmerloopscase and thenrolled case shortens.

Regarding the number of load/store units, the getabcrease in speedup is when passing
from 1 unit to 2 units (improvement of 11% for the-ifs set withinnerloops and 17% when
using unrolling). There are further improvementswladding concurrent memory accesses.
However, the additional complexity of a larger n&nbf concurrent memory operations can
outweigh the benefit in speedup.

The benefit of adding parallel FUs becomes lesectffe at an earlier point in the
innerloopscase than thanrolled case. Unrolling exposes more parallelism, which ke
advantage of a higher number of parallel FUs. Rerliaseline case in tm®-ifs set, with a
relatively small number of maximum FUs per row (e.§ FUs) we can achieve 99%
(innerloopg and 94% (nrolled) of the speedup when using unlimited resources.

Considering a default setup with 2 concurrent mgmmits and 8 parallel FUs, with the
baseline system we achieve an average overallcappih speedup of 2xland 1.% when
considering theno-ifs and theifs set, for the casmnerloops respectively. We consider this
architecture setup can represent a typical impléatien, and is referred herein 8sFUs-
2Mem

Unrolling increments the average speedup in bosesato 2.¥ and 1.4, due to new
Megablocks being detected in benchmarks were noablegks were detected before (e.qg.,
smooth), or by detecting Megablocks which increase theecage relative to inner loop
detection (e.g.compress2fdct, fir). In some cases, unrollindecreaseshe speedup (e.g.,
gdc2 popcmp}, but the increase in speedup in the other bendtar@mpensates for these
cases. This behavior is related to loops which heawariable number of iterations. When
considering only inner loops, they can be succgsfietected as Megablocks. However,
when unrolling, loops with a different number oérdtions will be detected as different
Megablocks. If these Megablocks have SAIl conflidtse identification will not be as
effective as when using only inner loops. Thuspilmg does not always mean improvement.

The previous results assume that the processorttendRPU work at the same clock
frequency. Figure 6.7 presents how the speedugssavhen considering different ratios
between the clock of the processor and of the Rétlihe case where the mapping can assign

as many arithmetical-logical units as needed, astricted to two memory operations per

105

cycle. For instance, a ratio of 1.5 means thdtefgrocessor is clocked at 100 MHz, the RPU
is clocked at 150 MHz.

4
(=N
S M
B3
o
Q.
- M’

D —

T T T T T T T T T T
1 11 12 13 14 15 16 1.7 1.8 1.9 2
RPU/GPP clock ratio

=#=—no-ifs =fll=no-ifs unrolled ifs ==¢=ifs-unrolled

Figure 6.7. Average speedup when varying the ratibetween the RPU and GPP clock frequencies.

Doubling the frequency of the RPU with respectht® processor increases the speedup by
1.7x and 1.4, for the no-ifs and theifs set, respectively. The increase in thifs set is
greater because its benchmarks spend a longeopatithe execution time in the RPU than
the benchmarks in the-ifs set.

Figure 6.8 presents individual speedups for thelbsscase, when using the setup 8 FUs-
2Mem. Overall, considering the complete set of 88dhmarks, for thenerloopscase we
achieve speedups from 8.50 4.8, with an average speedup of 2.(br 1.4x, when using
the geometric mean). When activating unrolling rofiar loops, we achieve speedups from
0.4x to 6.4x, with an average speedup of 2.@r 1.6<, when using the geometric mean).
After applying if-conversionand graph transformation techniques, the averpgedsips
increase slightly to 1X8and 2.4 when using the arithmetic mean, andxlahd 2.k when
using the geometric mean, for timmerloopsandunrolled cases respectively.

When considering only the benchmarks which prowpeedup, for thénerloopscase
we achieve an average speedup ok Zfrom 1.0x to 4.8) over 31 benchmarks for tme-ifs
set, and an average speedup ok féom 1.0x to 4.8) over 13 benchmarks for this set.
When considering unrolling of inner loops, in the-ifs set the average speedup increases to
3.1x (from 1.2x to 6.4x) over a set of 32 benchmarks, and initedadapted)set the average

speedup increases to 2.8rom 1.0x to 4.8) over a set of 22 benchmarks.

106

No-Ifs Innerloops

S ES TS E S 3,@00\,& Q‘ob &5&& T & FLLE &&QQ,& S &L LSS E &5
N S &L LTS RS J > & S 3 3 SRS N & & & or @’ DR
< \06"/ € &&Q&&Q & ¢Oé®¢/ S N o“?&@\o & & & & Ql&? QOQ CF @ & & @« (,{’1,&0.*_;&&. R
Q S
@ \\“9 or &

Ifs Innerloops

No-Ifs Unrolled Ifs Unrolled
7 4
35 34 35
6
5 o 39
g 21
23
v
27 1
14 08 0.6 06 g4 05
0 - o0
AR S -3 A D0 Q& & X o P 2 S > N > O Q & © &
FEF I LLTES I LS R R g S O SR AR R
& (P © & & 7 AR & O & N7 &N &S S 7 & & N 7 L
& LS & F & e g/ nR7 ¢ L QL S TN ¥ o Sy D &
& & &« S THE R Q7 F S R &€ *:.‘\& A 7 F &
& A < be &7 &7 & (\S' o'; [&
< > X & & &

Figure 6.8. Individual overall speedups for the baaline case, considering an RPU with a maximum of 8

parallel FUs and 2 load/store operations per cycle.

6.3.2 If-Conversion

We appliedf-conversiontechniques (see Section 4.5) to the source coteedt set. We
named the resulting sé¢ (adapted) Table 6.7 shows the clock cycles needed to ezdbat
benchmarks in the MicroBlaze processor, after agidrb theif-conversion and the ratio
between them. A value greater than one means asase in the number of clock cycles for
the adapted benchmark. For all benchmarks iniftheset, there was an increase in the

execution time, which ranged from a negligible @age (1.04 in conv_3x3 to more than

107

twice the execution time (2.29in median_3xR The examples with higher increases

correspond to cases whose kernels also have armghder off statements (see Table 6.2).

Benchmark Or|g|g§1lIC|(ZSC)Iock Adapct:t;(i Igg:lock Ratio
adpcm_coder 61,841 92,308 1.49
adpcm_decoder 46,516 83,079 1.79
Boundary 180,730 291,024 1.61
bubble_sort 52,095 97,325 1.87
change_brightness 15,610 23,553 151
Compositing 48,283 56,293 117
conv_3x3 14,933 15,587 1.04
cre32 79,562 141,093 177
Divlu 456,708 533,093 117
gcdl 678,177 1,099,497 1.62
idct_8x8_12q4 150,679 308,851 2.05
isqrtl 183,449 190,403 1.04
isqrt2 185,919 243,093 131
isqrt3 29,527 31,993 1.08
isqrt4 15,932 21,493 1.35
mad_16x16 1,010,712 1,209,363 1.20
mad_8x8 261,145 312,339 1.20
Max 22,626 30,820 1.36
median_3x3 75,225 172,159 2.29
Modexp 1,875,680 2,485,980 133
motion_estimation 1,088,464 1,285,122 1.18
Perimeter 10,224 15,007 1.47
pix_sat 31,116 44,103 1.42
rgb_to_hsv_int 65,175 115,113 L7
Rng 41,447 43,150 1.04
sad_16x16 39,515 47,195 119
sad_8x8 20,535 24,375 119
Sobel 49,953 59,534 119
viterbi_gsm 117,157 133,600 114
Average - B 141

Table 6.7. Cycle count and ratio of théfs set, before and afteiif-conversion.

In this thesis, all speedups related to benchmatksh were modified byf-conversion
techniques, such as tliks (adapted)set, are relative to the execution time of theyiogl
unmodified program, and can be directly compareth wil the other speedups (e.g., the

speedups of this set). The IPC values reflect the changes in tlaptad code.

108

Table 6.8 presents some of the characteristichebenchmarks in thiés (adapted)set
after adapting the source code of ifiseset.

#Input/Output

Benchmark Kernel LOC #loops Max. Loop nesting level Arrays
adpcm_coder 66 1 0 1/1
adpcm_decoder 50 1 0 1/1
Boundary 13 2 1 1/2
bubble_sort 17 2 1 1/0
change_brightness 19 1 0 1/1
Compositing 15 1 0 2/1
conv_3x3 40 2 1 2/1
cre32 11 1 0/0
Divlu 15 1 0 0/0
gcdl 16 1 0 0/0
idct_8x8_12qg4 177 4 1 1/1
isqrtl 33 1 0 0/0
isqrt2 15 1 0 0/0
isqrt3 17 1 0 0/0
isqrt4 15 1 0 0/0
mad_16x16 26 4 3 2/1
mad_8x8 25 4 3 2/1
Max 10 1 0 1/0
median_3x3 73 1 1/1
Modexp 11 1 0 0/0
motion_estimation 18 4 3 2/1
Perimeter 24 1 0 1/1
pix_sat 12 1 0 1/0
rgb_to_hsv_int 24 1 0 3/1
Rng 24 1 0 1/1
sad_16x16 11 2 1 1/1
sad_8x8 11 2 1 1/1
sobel 28 1 0 1/1
viterbi_gsm 29 4 2 3/2

Table 6.8. Characteristics of the benchmarks whicform the setifs (adapted).

Table 6.9 and Table 6.10 present detected Megalulbakacteristics of thiés (adapted)
set, for theinnerloops and unrolled cases, respectively. Applying-conversionhad two
effects in Megablock detection and execution. Ire drand, it enabled the detection of
Megablocks on benchmarks were previously there wereMegablocks detected (e.qg.,

adpcm_coderadpcm_decodercrc32, median_3x® In the other hand, it decreased the

109

number of total detected Megablocks in other beracks) making the ratio between detected
Megablocks and executed Megablock equal to one, (ak detected Megablocks are

executed) in many cases (eahange_brightnessgb_to_hsv_intrng, sobe).

Detected/

Benchmark Executed Avg(.:zljltl.I per Avg. Op. Ayg. ILP A_/g. CPL
Megablocks per It. (Min/Max) (Min/Max)
adpcm_coder 1/1 1023.0 88.0 2.1 41.0
adpcm_decoder 1/1 1023.0 79.0 2.2 36.0
boundary 1/1 99.0 270 3.9 7.0
bubble_sort 11 62.0 230 2.3 10.0
change_brightness 1/1 99.0 220 1.7 13.0
compositing 1/1 199.0 27.0 1.7 16.0
conv_3x3 0/0 NA. NA. N/A N/A
crc32 1/1 7.0 12.0 2.0 6.0
diviu 1/1 31.0 15.0 1.9 8.0
gedl 11 166.2 11.0 1.4 8.0
idct_8x8_12q4 212 70 355.0 15.3 (9.5/21.0) 21.0 (15/27)
isqrtl 2/1 11 70.0 0.7 99.0
isqrt2 1/1 15.0 13.0 2.2 6.0
isqrt3 1/1 15.0 17.0 21 8.0
isqrt4 1/1 50 320 2.7 12.0
mad_16x16 1/1 15.0 17.0 1.9 9.0
mad_8x8 1/1 7.0 17.0 1.9 9.0
max 1/1 2047.0 14.0 1.4 10.0
median_3x3 1/1 998.0 172.0 2.5 69.0
modexp 1/1 29.8 17.0 0.5 37.0
motion_estimation 1/1 15.0 19.0 2.1 9.0
perimeter 1/1 479.0 30.0 3.0 10.0
pix_sat 1/1 1999.0 21.0 15 14.0
rgb_to_hsv_int 1/1 499.0 162.0 3.4 47.0
Mg 11 498.0 70.0 44 16.0
sad_16x16 1/1 15.0 17.0 1.9 9.0
sad_8x8 1/1 7.0 17.0 1.9 9.0
sobel 1/1 957.0 61.0 3.1 20.0
viterbi_gsm 2/2 70 41.0 4.8 (4.3/5.3) 8.0 (3/13)

Table 6.9. Megablock characteristics for théfs-adapted set, only inner loops.

When comparing thds (adapted)set with thefs set, the number of iterations generally
increases. As thi&-conversiontechnique includes several paths in the same Meglaht can

execute uninterruptedly in the RPU for a higher bhanof iterations.

110

Detected/

Benchmark Executed Avg. It. Avg. Op. Ayg. ILP Ayg. CPL
Megablocks per call per It. (Min/Max) (Min/Max)
conv_3x3 11 149.0 99.0 4.5 22.0
cre32 2/1 999.0 109.0 2.2 50.0
idct_8x8_12qg4 42 49.0 2855.5 82.2 (44.5/119.9) 32.0 (26/38)
isgrtl 4/1 1.7 82.0 0.5 169.0
isqrt2 2/1 999.0 225.0 2.3 99.0
isqrt3 2/1 99.0 287.0 25 114.0
isqrt4 2/1 99.0 208.0 2.8 75.0
mad_16x16 2/1 15.0 278.0 111 25.0
mad_8x8 2/1 7.0 142.0 8.4 17.0
motion_estimation 2/1 15.0 312.0 12.5 25.0
sad_16x16 2/1 15.0 277.0 11.1 25.0
sad_8x8 2/1 7.0 141.0 8.3 17.0

Table 6.10. Megablock characteristics for théfs-adapted set when applying unrolling.

For theinnerloopscase, the average ILP decreases slightly (fromda32)7), while in the
unrolled case, it increases (from 5.7 to 6.5). The chamgé_P between thefs and ifs
(adapted)sets is not significant (less than one operatiarjen considering the impact of
if-conversionon the value of ILP of the whole set. However, itiddvidual ILP does not have
a general behavior and its increase or decreasndsn the benchmark.

The average CPL significantly increases, from 18.20.3 and from 16.3 to 35.9 for the
innerloops and unrolled cases, respectively, reaching similar values #® dbrresponding
average CPL of theo-ifsset (22.2 and 30.0).

Figure 6.9a) and Figure 6.9b) presents upper bapegdups for thés (adapted)set,
when considering only inner loops and inner loopollimg, respectively. The average
speedup potential of thés set is one order of magnitude below the potewofidghe no-ifs set
(see Figure 6.4). Aftaf-conversionthe gap almost disappears.

If-conversionincreases both the average speedup and the av@@ggsee Figure 6.10
and Figure 6.11). For thé#s (adapted)set, the effect of enabling unrolling has a more
pronounced effect in the values of speedup. Thiednigteepness of the slop in the clock ratio
lines of theifs (adapted)set (see Figure 6.12) is related to a higher gomif RPU execution.
Appendix B, Section B-2, presents the results ulieggeometric mean instead. In this case,

the performance of the adapted sets continues toigstently above the performance of the
unmodified sets.

111

1000

=3
=]
T 10 -
ﬂl
Q.
v
14
0.1 +
el oV N\ g > Qs > > o) el QS X x> Q& o) > 2
F F & P T I S S S A R AP G AP N «’\‘Q’b& e 3?& &
€ L el & 37 SR R R A 7 L& L& S F$ N T S
o ¥ P LS L7 5 P SRS O N
M AR IS OIS <! Sl & & & ©7 2 &
N & W or 8 id <« N o7 7 ° <
N < & © &
& <&
a)
1000
Qo
=]
°
Q
@
Q.
w
\g © & Q> (J @
S & T o T &
& b\ ’bb/ \&’b b\, 'bb/ 'bAe
6@/ & S D7 g
i
&
&

B Megablock (CPL based) B Megablock (Zero Cycles) M Megablock and Comm (Zero Cycles)

b)
Figure 6.9. Upper bound speedups afteif-conversion a) when considering inner loops and b) when

unrolling inner loops.

|

Speedup
IPC
o B N W A~ U O N
A
3
b
b
3
»
»

Max. load/store units per line

—o—ifs (adapted) ==ifs-unrolled (adapted) ==h=ifs ==<=ifs-unrolled
a) b)

Figure 6.10. Average a) speedup and b) IPC for adégd code when varying the maximum number of

load/store units per row.

112

25 5

N

Speedup
N

1 2 3 4 5 6 7 8 9 10 16 32 64 o
Max. arithmetic/logic units per line

1 2 3 4 5 6 7 8 9 10 16 32 64 «

—4—ifs (adapted) =—=ifs-unrolled (adapted) ifs ===ifs-unrolled
a) b)

Figure 6.11. Average a) speedup and b) IPC for adégd code when varying the maximum number of

arithmetic/logic units per row.

1 11 12 13 14 15 16 17 18 19 2
RPU/GPP clock ratio

—o—ifs (adapted) =—@=ifs-unrolled (adapted) ifs ==>¢=ifs-unrolled

Figure 6.12. Average speedup for adapted code whearying the ratio between the RPU and GPP clock.

6.3.3 Graph Transformations

We can apply several transformations over the Miegibgraph representation (see
Section 5.1). For instance, we can apply Constaidiftg and Propagation (CFP) to reduce
the number of operations of the graph. We condigee three transformations in sequence:
assembly instructions to intermediate represemtdfi®), Constant Folding and Propagation
(IR + CFP), and Identity Simplifications (IR + CRHS).

When applying them to thenerloops case we did not observe significant changes.
However, theunrolled case offered more opportunities for the considdéradsformations.
Table 6.11 and Table 6.12 show the difference betvilee original number of instructions in
the Megablock and the number of operations after tlansformations when enabling
unrolling, for theno-ifs andifs (adapted)sets, respectively. A negative value represents a

decrease in the number of operations when compatkdhe original assembly instructions.

113

Benchmark IR IR + CFP IR+CFP + IS

compress2 3% -14% -16%
corr_gen 26% 8% -9%
fdct_8x8 -9% -11% -13%
fft 30% 30% 15%
fir 20% -2% -17%
gcd2 0% 0% 0%
maxstrl 10% -13% -19%
maxstr2 2% -2% -20%
mulinv 1% -9% -41%
popcmpr 5% 4% 3%
smooth 14% -21% -40%
wave_horz 13% -1% -6%
wave_vert 18% -10% -24%
ycberd22p_rgb 8% 1% -5%
average 10% -3% -14%

Table 6.11. Decrease in the number of Megablock ofaions, for the unrolled no-ifs set considering three

transformations.

Benchmark IR IR + CFP IR + CFP + IS
conv_3x3 22% 7% -5%
cre32 -16% -36% -38%
idct_8x8_12q4 25% 24% 23%
isqrtl 1% 7% -16%
isqrt2 1% -30% -31%
isqrt3 -4% -23% -24%
isqrt4 1% -15% -16%
mad_16x16 13% 7% -14%
mad_8x8 13% 7% -15%
motion_estimation 18% 0% -19%
sad_16x16 13% 7% -8%
sad_8x8 13% 7% -9%
average 7% -9% -14%

Table 6.12. Decrease in the number of Megablock oions, for the unrolled ifs-adapted set considering

three transformations.

The first column represents the ratio when themabginstructions are converted into the
IR. The conversion can either increase or decrdas@umber of operations, depending on
the instructions being converted. Converting memasjructions increases the number of
operations, due to the unfolding of the instructioio the operations to calculate the address

and the memory operation. Other instructions, agimopsor auxiliary instructions such as

114

imm, contribute to a reduced number of operationsa@rage, we have an increase of 10%
and 7%, for theo-ifsandifs (adaptedyets, after transforming the instructions to Re |

Applying CFP generally decreases the number ofatjpgrs, to -3% and -9%né-ifs and
ifs (adapted) of the original assembly instructions on averdgemost cases, the reduction
provided by CFP is greater than the increase #milts from transforming the instructions
into the IR. Applying the IS transformation furthgecreases the number of operations. The
effect is more pronounced in th-ifs set than in thefs (adapted)set. Considering this
sequence of transformations (i.e., IR+CFP+IS),rdtkiction is on average the same in both
sets (-14% for thao-ifsandifs (adapted)ets)

When considering theinrolled case, we observed that generally the transformstio
resulted in minor increases in the speedup and miacreases in the IPC (see Figure 6.13,
Figure 6.14, and Figure 6.15).

For the 8 FUs-2Mem configuration there was an iaseeof 1.0¥ and 1.03, and a
decrease in the IPC to 95% and 92% of the origuadlie, for theno-ifs set and thefs
(adapted)set, respectively. The increase in speedup catthleuted to a decrease in the CPL
of the Megablock in a few benchmarks. The mostceatile speedup was observed for the
benchmark fir (1.5<). The decrease in IPC was expected, since on geerthe
transformations reduced the number of operationsl4f, for the affected Megablocks.
While these transformations did not affect perfanoeasignificantly, they are useful to lower

the mapping effort, by reducing the size of the ®tdgcks to implement.

N} w
w
IPC
O kL N W A U O N

Speedup

1 2 3 4 5 [7 8 [Max. load/store units per line

=== noifs == noifs-unrolled ifs (adapted) =>¢=ifs-unrolled (adapted)
a) b)

Figure 6.13. Average a) speedup and b) IPC after gph transformations, when varying the maximum

number of load/store units per row

115

1 2 3 4 5 6 7 8 9 10 16 32 64 o
Max. arithmetic/logic units per line

== noifs == noifs-unrolled ifs (adapted) =>¢=ifs-unrolled (adapted)
a) b)

Figure 6.14. Average a) speedup and b) IPC after gph transformations, when varying the maximum

number of arithmetic/logic units per row.

6
5
a4
=]
® 3
[}
Q
wv 2 A S =
1
0 T T T T T T T T T T
1 1.1 1.2 13 1.4 1.5 1.6 1.7 1.8 1.9 2
RPU/GPP clock ratio
=¢—noifs == noifs-unrolled ifs (adapted) ==><=ifs-unrolled (adapted)

Figure 6.15. Average speedup after graph transforntaons, when varying the ratio between RPU and GPP

clock frequencies.

6.4 Hardware Module for Megablock Detection

We developed a proof-of-concept HDL generator whociputs VHDL for Megablock
Detectors, as depicted in Figure 5.3, accordingeteeral parameters (see Appendix C, Figure
C.4). Figure 6.16 presents the resources needeidhpgtement the Megablock Detector
hardware module, when varying theaximum pattern sizand the bit-width of the pattern
element.

For the explored parameter ranges, the number dfsLend FFs resources increases
linearly with the increase of thmaximum pattern sizéligher bit widths generally represent a
higher number of used resources, although the aserés more significant for FFs than for

LUTs. The behavior of the LUT resources is moregular than the behavior of the FFs. We

116

attribute this behavior to the way the synthesi tmaps certain FPGA primitives (e.g.,
SRLs), used in the VHDL code.

800

oo =
500 /vﬂ‘a
5 o e

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

1400
1200

1000 /
800

600 / —
400 /ﬁé
200 | _—

o+—r—r—r+—7—vV—V7rrrTT T T T T T T T T T

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

FFs

300
250 - \\

= 200 -

= K\\: :
150 -—

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Maximum Pattern Size

e 8 Pt == 16 bits 20 bits e===32 bits

Figure 6.16. LUTs, FFs and estimated maximum frequeies for Megablock Detector hardware

designs.

For the base case witm@aximum pattern sizef 24 elements, and considering an address
space for instructions of 20 bits, the module ne#sts LUTs and 636 FFs, which represent
around 1% of the targeted FPGA (a Xilinx Spartah>45). These values include the
encoder and the state machine for determining tieiat state of the detector. The decrease

of the maximum clock frequency with the increaséheimaximum pattern siagas expected,

117

as higher values for theaximum pattern sizenplies more complex logic paths in some parts
of the Megablock Detection module (e.g., the consparbetween the current pattern element
and all the positions in the FIFO). There are eegiimg solutions which can mitigate the
decrease in frequency, at the cost of some lat@ngy, by using fan-out trees).

However, the current implementation works at sidfit speed for the considered
scenarios. For instance, considering the baseafasmaximum pattern sizef 24 elements,
the maximum estimated clock frequency is betweeh NIBiz and 147 MHz (depending on
the bit-width of the elements), which is enougimeet the clock frequency of the MicroBlaze
soft processor.

Higher bit-widths generally produced designs wilvér clock frequencies, although the
impact is relatively small. The maximum impact loé toit-width on the clock frequency is on

average 14% for the cases studied.

6.5 Megablock Pipelining

To demonstrate the proposed pipelining techniqueesgnted in Section 5.6), we
developed a proof-of-concept VHDL generator whidmwerts a Megablock graph into a
specialized hardware module (see Figure B.9). Fgiven Megablock, the tool can generate
two types of modules: an implementation of the &Aahitecture described in Section 5.5.2,
and a pipelined version of the same architectuieagughe overlapping scheduled. The
generation of the pipelined architecture is perfdnmafter applyingf-conversion (when
applicable) and the Megablock graph transformataescribed in Section 5.1. The version of
the generator used herein does not support Medabloith memory operations.

For the first part of this section, we consideead simple benchmarks without memory
operations, namednemoryless(i.e., compressl count even_ones expand fibonacci
hamming_dist popcmpr reverse and gcdl). We implemented Megablocks representing a
kernel of each benchmark, and estimated the clgcles needed by the hardware module for
executing the pipelined and the non-pipelined waisiof the considered Megablocks using
equation (5.1). We also estimated overall apphlecatspeedups, taking into account all
communication overheads. Considering thensemorylesswe synthesized two versions of
the hardware module, with and without pipelining,nieasure resource usage, confirm the

execution cycles and validate the approach. Iretiteof the this section, we present overall

118

speedup estimations after pipelining considerirgnib-ifs and theifs (adapted)sets of the
previous section.

We consider that communication between the GPPthadhardware module is done
through FSLs (Fast Simplex Link) [90] usimget and put instructions, one for each
Megablock input or output, respectively. Each oh&hese instructions takes one clock cycle
to execute [90]. Based on an implementation (pteskeim Appendix A) of the architecture of
Figure 5.10b), we estimate that the value for #rentPartitiones, in equation (5.4) has a
constant overhead of 8 clock cycles per Megabladk c

The SAr architecture can have as many FUs in aarmvas many exits per row as needed.
We defined the execution cycles of the operatianglantical to the clock cycles needed by
the MicroBlaze for equivalent instructions, whe fbrocessor is optimized for speed [90].
Similarly to other approaches [14], we assume @aemory operation can be done in a single
clock cycle. We also consider that the RPU is coteteto local memories which support up
to two simultaneous memory operations per cyclg (dual-port BRAMS).

Table 6.13 presents the overall application IPCstfurctions per Cycle) achieved
considering the Megablock for each benchmark ifedght kinds of RPUs. As expected, the
IPC considering Megablocks and the RPU is highan the IPC achieved by the MicroBlaze,
which is below 1. Since all the RPUs used have ra¢\dJs executing in parallel, the IPC
usually increases, proportionally to the ILP of Megablock.

With pipelining, more than one row of the RPU igexting per clock cycle (in the steady
state, all FUs execute in parallel in each itergtiand the IPC relative to the non-pipelined
RPU increases. As expected, the IPC of overlappbkddsile is consistently higher than the
IPC of the sequential schedule.

Table 6.14 summarizes the characteristics of theydddleck considered for each
benchmark of thenemorylesset, when mapped to the non-pipelined versiom®f3Ar. The
number of operations in the Megablocks ranges latwleand 11. When mapped to the non-
pipelined SAr the number of rows ranged betweend3& with the largest row having 3 FUs.
The number of iterations per call ranges from ado@n (popcmp) to a few thousands

(fibonacc), having most benchmarks a number of iterationaraat 30.

119

. RPU Non- RPU Pipelined RPU Pipelined
Benchmark MicroBlaze T . X
Pipelined Sequential Overlapping
compressl 0.88 2.00 3.03 3.72
count 0.85 2.00 2.53 3.30
even_ones 0.85 2.00 3.36 4.93
expand 0.88 2.00 3.03 3.72
fibonacci 0.86 1.33 3.01 5.90
hamming_dist 0.85 2.00 3.36 4.93
popcmpr 0.88 1.50 3.41 4.80
reverse 0.87 2.33 3.03 3.96
gcdl 0.70 1.38 2.58 3.00

Table 6.13. IPC when the Megablock for each benchmiais executed in several platforms.

Avg. Iterations p/

Benchmark FUs Rows Max. FUs p/ row call

compressl 8 4 3 29.0
count 6 3 2 31.0
even_ones 6 3 3 31.0
expand 8 4 3 29.0
fibonacci 4 3 2 2378.0
hamming_dist 6 3 3 31.0
popcmpr 6 4 2 8.4
reverse 7 3 3 31.0

gcdl 11 8 3 166.2

Table 6.14. Megablock mapping characteristics on #thnon-pipelined architecture.

Table 6.15 and Table 6.16 present a comparisondegiihe overall speedup when using
non-pipelined and pipelined RPUs with a sequentadd an overlapping schedule,
respectively. The first two columns, “Non-Pipelin&peedup” and “Pipelined Speedup”,

indicate the overall speedup achieved when coreglean RPU without and with pipelining.

Benchmark Non- Pipelined Speedup Non-Pipelined Pipelined CPL
Pipelined Speedup Improvement CPL (#clock (Steady State)
Speedup cycles) (#clock cycles)
compressl 1.65 1.34 0.81 4 5
count 1.72 1.36 0.79 3 4
even_ones 1.68 1.63 0.97 3 3
expand 1.66 1.34 0.81 4 5
fibonacci 2.32 3.46 1.49 3 2
hamming_dist 1.66 1.62 0.97 3 3
popcmpr 1.00 1.03 1.03 4 3
Reverse 1.88 1.49 0.80 3 4
gcdl 0.97 1.06 1.10 8 7
Average 1.62 1.59 0.98 3.89 4

Table 6.15. Comparing a non-pipelined and a pipelied architecture with sequential scheduling.

120

Benchmark Non- Pipelined Speedup Non-Pipelined Pipelined CPL
Pipelined Speedup Improvement CPL (#clock (Steady State)

Speedup cycles) (#clock cycles)
compressl 1.65 1.54 0.93 4 4
count 1.72 1.64 0.95 3 3
even_ones 1.68 2.07 1.23 3 2
expand 1.66 1.54 0.93 4 4
fibonacci 2.32 6.83 2.95 3 1
hamming_dist 1.66 2.04 1.23 3 2
popcmpr 1.00 1.16 1.16 4 2
reverse 1.88 1.79 0.95 3 3
gcdl 0.97 1.22 1.26 8 6
average 1.62 2.20 1.36 3.89 3

Table 6.16. Comparing a non-pipelined and a pipelied architecture with overlapping scheduling.

Being each benchmark already accelerated by the, RIRJ objective of Megablock
pipelining is to increase the speedup providedimaity by the RPU. The column “Speedup
Improvement” represents the ratio between the npeliped speedup and the corresponding
pipelined speedup. A value of 1 means that thene idifference in speedup between the non-
pipelined and the pipelined version; a value grethizn one represents an improvement in the
speedup; a value lower than one represents a stewdo

For instance, we estimate an overall speedup @*1fé the benchmarkamming_dist
before pipelining. With the pipelining overlappisghedule, the performance of the RPU can
be improved by 1.28 This translates into an overall speedup of 2.@dter pipelining.

In this set of simple benchmarks, when using setiplescheduling, performance
degradation happens in most of the cases afteryiagplpipelining. Pipelining with
overlapping schedule leads consistently to beieiopmance than the sequential schedule. It
Is sometimes able to achieve speedups of benchrelaokgng slowdowns with the sequential
schedule gvenonesindhamming_digt

However, even with overlapping scheduling, the iovements are not very significant.
With the exception of thBbonaccibenchmark, which achieves a speedup increasergm
to 6.8 after pipelining (an improvement of around *3,0the other benchmarks achieve a
speedup of at mostx2(with improvements between 1A &nd 1.28). In four benchmarks
there were still slowdowns. We attribute these lteso the fact of considering Megablocks
without memory accesses. In those Megablocks, higkly likely that the computations for
the update of the inputs represent a significamt piathe critical path of the Megablock,
increasing the CPL of the Input Module (Section.®.@éand, consequently, the number of

cycles needed to complete an iteration. In Mega&slogith memory accesses, it is more

121

likely for the update of inputs to be related te thpdate of the addresses for the memory
accesses. This can be confirmed with the CPL cdduofnTable 6.15 and Table 6.16. To
achieve improvements when pipelining, the numbercyfles of the steady state of the
pipelined version must be lower than the numbeasyafes for a single original non-pipelined
iteration.

Figure 6.17 compares the resource increase betRPéfs without and with pipelining

using an overlapping schedule.

180%
160%
140%
120%
100%
80%
60%
40%
20%
0%

HLUTs MFFs Max. freq. (MHz)

Figure 6.17. FPGA resources increase when using giming with overlapping schedule over the non-

pipelined implementation.

The values show increases relative to the FPGAuress of the implementation of the
non-pipelined modules. In all cases, the pipelimglementation uses more FF (flip-flop)
resources (between k&nd 1.% more resources), and generally, the LUTs (lookalpe)
resources increase too (between %.8td 1.& more resources). This is to be expected, as the
pipelined version includes additional modules (did), which can have several stages. The
maximum clock frequencies in the pipelined moduiase moderate decreases for most of
the benchmarks (between 0x7dnd 1.0%).

Much of the increase in resources can be explaimgdthe characteristics of the
benchmarks. Having the CPL of the pipelined modwdey close to the CPL of the non-
pipelined module indicates that the IM replicatesstrof the critical path of the LM. As these

are small benchmarks, the critical path represarigy portion of the Megablock body. We

122

expect that in examples with memory accesses, Nheepresents a small portion of the
Megablock body.

In one benchmarkeverse the number of LUTs decreases. When the sub-meadiléhe
VHDL description of the pipelined version of thisfchmark are implemented separately, the
number of LUTSs is always the same or greater fermbn-pipelined version. We suggest that
the number of LUTs decreases in the main module tduglobal hardware synthesis
optimizations. The increased number of FFs enathlessynthesis tool to use the FF logic
(e.g., set and clear inputs) to implement soméheflogic which was previously mapped to
LUTs.

When considering the set of 66 benchmarks usecatid® 6.3, as thao-ifs and theifs
(adapted)sets contain benchmarks with memory accesseqply e pipelining technique
we need to ensure the guarantees presented inosesi6.1 to avoid inter-iteration
dependencies. After examining the source code ef lenchmarks, we discovered 5
benchmarks, out of 66 (7.6%), which did not respbet guarantees. A number of them
compute some state during an iteration which isiedeén the next iteration, e.gng, viterbi,
md5 Others, e.g.bubble_sortfft, modify parts of the input array and generate {ocapied
dependencies which cannot be removed without chgrthe algorithm. These 5 benchmarks
were not considered in the following results.

We observe significant increases in both speedupl@@, when using pipelining with
overlapping schedule (see Figure 6.18, Figure @é&8,Figure 6.20). Thiés (adapted)set in
particular shows great speedup potential when lgoplling is enabled, which is similar or
greater than the speedup of tieeifs set under the same conditions. Appendix B, Se@i@&n
and Section B-4, present the results using the g@@mmean instead, for sequential
scheduling and overlapping scheduling, respectiwaligen considering the geometric mean,
theifs (adapted)set shows lower speedups than tioeifs set for theunrolled case. For the
innerloopscase, the gap between the sets is larger.

In Figure 6.18, when going from a maximum of 8 memaperations to an unrestricted
number of memory operations there is a significgmke in IPC that is not followed by the
speedup. We attribute this behavior to a single VBlQe which is distant from the rest of the
data, from the benchmai#ict _8x8 The lines of IPC and speedup have a similar behav
Figure B.10 in Appendix B-4, which uses the geometnean (which is less affected by

extreme values) instead of the arithmetic mean.

123

Speedup

0 T T T T T T T T 1 1 2 3 4 5 6 7 8 ©
1 2 3 4 5 6 7 8 « Max. load/store units per line

== no-ifs == no-ifs unrolled == ifs (adapted) =><=ifs-unrolled (adapted)

a) b)

Figure 6.18. Average a) speedup and b) IPC after pelining with overlapping schedule, when varying te
maximum number of load/store units per row.

20

e 15 Yot

Speedup
O B N W A U OO N
P
i
o

T T T T T d 1 2 3 4 5 6 7 8 9 10 16 32 64 o
1 2 3 4 5 6 7 8 9 10 16 32 64 o Max. arithmetic/logic units per line

== n0-ifs == no-ifs unrolled =—ifs (adapted) =>¢=ifs-unrolled (adapted)

a) b)

Figure 6.19. Average a) speedup and b) IPC after pelining with overlapping schedule, when varying te
maximum number of arithmetic/logic units per row.

12 M

10

T T T T T T T T T T
1 11 12 13 14 15 16 1.7 18 19 2
RPU/GPP clock ratio

Speedup
(<))

=== n0-ifs =l=no-ifs unrolled == ifs (adapted) =>¢=ifs-unrolled (adapted)

Figure 6.20. Average speedup after pipelining witloverlapping schedule, when varying the ratio betwee
RPU and GPP clock frequencies.

Figure 6.21 presents overall application speedupgnwconsidering pipelining with

overlapping schedule and the 8 FUs-2Mem configomati

124

We observe that in several cases, the pipelinimfribation amplifies the improvement of
the RPU by a factor of 2 or more. For instance, egimate a speedup o Jor the
benchmarkvecsumbefore pipelining. With an overlapping schedtibes performance of the

RPU can be improved by 1286 This translates into an overall speedup ofxb.8fter

pipelining.

No-Ifs Innerloops

9.1

12.4

-

Speedup
O Rr N WA UON®®WO
L L

Ifs Innerloops

9.3 9.7

=

Speedup
O R NWHAUIOON WLWO
L L

No-Ifs Unrolled Ifs Unrolled

32.0 96 115 . 320 253 18.1 9.7

=

i
ORr NWAUON®OO
A R S R R TR T T

Speedup
ORrR NWAULON®®WO
P T T S S SR

06 05 04 gy 04

Figure 6.21. Individual overall speedups for a pipéned architecture with overlapping schedule,

considering a maximum of 8 parallel arithmetic/loge FUs and 2 load/store operations per clock cycle.

There are noticeable speedups after pipeliningsdoeral benchmarks. For timmerloops

case we have change_brightnessfrom 1.6< to 9.3%; checkbits from 4.1x to 12.4;
125

compositing from 1.6< to 9.3; fibonacci from 2.3 to 6.8; gouraud from 3.1x to 9.1x;
quantize from 2.2 to 6x; andrgb_to_hsv_intfrom 2.3 to 7.0x. For theunrolled case we
have compress2from 2.5¢ to 32; crc32 from 1.6« to 32.(; isqrt3, from 2.5¢ to 25.3;
isqrt4, from 2.(x to 18.%; andpix_sat from 1.1x to 7.4x.

These speedups can be explained by two factorenieskin Table 6.17. The first factor is
the ratio between the average CPL of the executegallocks in the baseline scena@i
(Baseline) column), and the average number of cycles of tteady state when the
Megablocks execute using the overlapping sched@ikafly State Latencplumn). The ratio
between these two valueRdtio column) is an upper-bound for the possible inareis
speedup when applying pipelining. For instanme32 went from a speedup of X@o a
speedup of 32 after pipelining, which represents an improvenw20x for a corresponding
ratio of 24.%. The second factor is the number of average iterafper Megablock call (last
column). Note that in all cases, the number of ayeriterations is high (above 99). When
using pipelining, the improvement comes from execuin the steady state. The higher the
portion of execution is spent in the steady statstéad of the prologue), the closer the
improvement is to the upper bound speedup givethéyatio between the baseline CPL and

the steady state latency.

Benchmark CPL (Baseline) Stﬁ:?eynf;ate Ratio Im‘;‘foevi%‘gm Avg. It. p/
(#clock cycles) (#clock cycles) call
change_brightness 12 2 6.0 5.81 99
checkbits 16 4 4.0 3.02 166
compositing 15 2 7.5 5.81 199
fibonacci 3 1 3.0 2.96 2,378
gouraud 6 2 3.0 2.94 1,999
quantize 6 2 3.0 2.69 199
rgb_to_hsv._int 55 16 3.4 3.04 499
compress?2 65 4 16.3 12.80 999
crc32 49 2 245 20.00 109
isqrt3 112 2 56.0 10.12 99
isqrt4 73 2 36.5 9.05 99
pix_sat 14 2 7.0 6.73 2,000

Table 6.17. CPL comparison between baseline and m@lined with overlapping schedule.

126

Overall, we could apply the loop pipelining techuegqto 61 of the 66 benchmarks
originally considered in this chapter. Considerihgs subset of 61 benchmarks and loop
pipelining with overlapping schedule, for tmmerloopscase we achieve speedups fromx0.2
to 28.5¢, with an average speedup of 8.(br 1.8, when using the geometric mean). When
activating unrolling of inner loops, we achieve egheps from 0.2 to 32, with an average
speedup of 556 (or 3x, when using the geometric mean).

When considering only the benchmarks which proddeedup, for thénnerloopscase
we achieve an average speedup ok4fdlom 1.5< to 28.5) over a set of 28 benchmarks for
theno-ifsset, and an average speedup ok 3ffom 1.1x to 9.7%) over a set of 15 benchmarks
for the ifs (adapted)set. When considering unrolling of inner loops,tie no-ifs set the
average speedup increases to<gffom 1.5¢< to 32) over a set of 32 benchmarks, and in the
ifs (adapted)set the average speedup increases to @tdm 1.1x to 32x) over a set of 22
benchmarks.

Combining the techniques previously presented (ifoep unrolling,if-conversion graph
transformations, loop pipelining) we were able thiave results on par to those found in
literature. For instance, Warp [13], the work wdidne closest to our approach (e.g., uses
loops as detection unit), reports an average sppeeidt.3x over a set of 15 benchmarks. Paek
et al. [58], which also implements loop pipeliningCGRAS, but on a static context, report an

average speedup of S.4vhen using examples of the DSPstone benchmard [Su87].

6.6 Application Examples

6.6.1 3D Path Planning Application

Using the same approach of Section 6.3, we apfliedlynamic partitioning technique to
an airborne collision avoidance application, knoam3D Path Planning (herein referred as
3dpp, provided by Honeywell [128]. It consists of 8dides of C code, distributed over 10
files and 48 functions. A step of the applicatiequires 50,601,067 MicroBlaze clock cycles.

Most of the application time (~80%) is spent inigke function,griditerate, which has
61 lines of C code and a nested loop with 3 levElse function was modified with the
if-conversiontechnique described in Section 4.5. When using technique, usually the
software execution time of the program increases,td the execution of all paths of the loop
in each iteration. In this case, it reduced slightlepresenting 99.5% of the previous

127

execution time. We consider that two factors ctwte to this effect: first, the loop contains
one frequent path which is computationally inteasiwhile the other paths are rarely taken
and are very lightweight (e.g., attribution of anstant to a variable). This contributes to an
execution time of the function that is at leastikinto the original. The reduction comes from
the loop not having branches, eliminating the binamdsprediction penalties which happen in
the original function.

Table 6.18 presents the characteristics extracteth fthe 3dpp application, when
considering the default setup for Megablock detectf a maximum pattern size of 24, and
the basic block as detection unit. In the curremplementation, 10 Megablocks are
responsible for about 64% and 87% of the softwaex@ation time, when considering inner
loops or loop unrolling, respectively. We obtainedspeedup of 1xXlwhen mapping only
innermost loops, and a speedup &fvizhen unrolling innermost loops. Most of the spegedu
improvement of the unrolled case comes from théndrnigcoverage and higher number of
iterations per call, and higher number of operaimxecuted per iteration (reducing
overhead). The average ILP for both cases is adowe positive contributor to the overall

speedup.

Unrolled Speed Coverage Megablocks Avg. It. Avg. Op. Avg. ILP Avg. CPL
Loops up 9 Det./Exec. p/ call p/ It. (Min/Max) (Min/Max)

No 1.1 64% 11/10 9.4 36.0 4.1 (2.5/7.0) 9.3 (2/33)

Yes 2.0 87% 22/10 17.1 153.2 4.4 (2.9/8.0) 39.6 (2/165)

Table 6.18. Characteristics for the execution of #happlication 3dpp.

6.6.2 Dynamic Partitioning on an Embedded Processor — fir

We have developed Java tools (see Appendix C) wimghement and simulate some of
the phases of dynamic partitioning (e.g., detecticanslation). Additionally, we have ported
the tools to the Android platform [129] and builtsaftware version of the Megablock
Detector in C language. This way, it was possiblmeasure the execution time of the several
steps of these phases, when executing on embedalsgspors.

In this section we focus on an application and gmmegxamples of the several steps for
that application. We selected tlie benchmark since it was complex enough to be an
interesting example, and small enough to illusttiageprocess.

Figure 6.22 presents the C code for the kerndt@fitt function. After compiling the code
according to the setup described in Section 6.1, simeulated it so we could detect

128

Megablocks. We used the default setup for Megablbetection (24 as maximum pattern
size, and basic block as detection unit) and edalolep unrolling. Two Megablocks where
detected, one representing 0.1% of the softwareutiom time, and the other representing
around 98% of the software execution time. The fWviegablock was discarded, only the

latter was considered in this example.

void fir_original(int x[], int c[], int M1, int N1, int *y) {
intj, i;
y[0]=c[0]*x[O];
y[1]= c[O]*x[1]+c[1]*X[O];
y[2]= c[0]*x[2]+c[1]*x[1]+c[2]*X[O];

for(j=3; j<M1; j++) {
int output=0;
for(i=0; i<N1; i++) {
output+=c[i]*x[j-i];
}
yli] = output;
}

Figure 6.22. C code for dir function.

Figure 6.23 shows the considered Megablock, antaogenthree columns of information.
The first column shows the addresses of the instmg of the Megablock body; the second
column shows the assembly instructions executethéwlicroBlaze processor that form the
Megablock; and the third column shows the corredpan graph operations when
transforming the code to the graph representatinen an assembly instruction is
represented by two or more graph operations (éuwg.Iwi, sw), the additional graph
operations appear separated by commas.

The instruction addresses of the first column #rat in bold (six in total) represent the
addresses needed to detect the Megablock. Thegspamd to the first address of the six
basic blocks that represent the Megablock. As éx@thin Section 4.3, two repetitions of the
same sequence of addresses are enough to detegiadliick, which means that 12 addresses

where needed to detect this Megablock.

129

Address Instruction Graph Op.

0x00000208 bleid r9, 52 - 0:lessOrEqualZero
0x0000020C addk r10, r0, r0 - l:add
0x00000210 addk r8, r6, r0 - 2:add
0x00000214 addk r7, r10, r0 - 3:add
0x00000218 bslli r3, r7, 1026 - 4:sll
0x0000021C Iwi r5, r8, 0 - 5:add, 6:load
0x00000220 Iw r4, r11, r3 - 7:add, 8:load
0x00000224 addik r7,r7, 1 - 9:add
0x00000228 addik r8, r8, -4 — 10:add
0x0000022C mul r4, r4, 15 ~ 11:mul
0x00000230 rsubk r18, r7, r9 - 12:rsub_carry
0x00000234 bneid r18, -28 - 13:equalZero
0x00000238 addk r10, r10, r4 - 14:add
0x00000218 bslli r3, r7, 1026 - 15:sll
0x0000021C Iwi r5, r8, 0 - 16:add, 17:load
0x00000220 Iw r4, r11, r3 — 18:add, 19:load
0x00000224 addik r7, r7, 1 - 20:add
0x00000228 addik r8, r8, -4 - 21:add
0x0000022C mul r4, r4, 15 -~ 22:mul
0x00000230 rsubk r18, r7, r9 - 23:rsub_carry
0x00000234 bneid r18, -28 - 24:equalZero
0x00000238 addk r10, r10, r4 - 25:add
0x00000218 bslli r3, r7, 1026 - 26:sll
0x0000021C Iwi r5, r8, 0 - 27:add, 28:load
0x00000220 Iw r4, r11, r3 — 29:add, 30:load
0x00000224 addik r7,r7, 1 - 3l:add
0x00000228 addik r8, r8, -4 ~ 32:add
0x0000022C mul r4, r4, r5 ~ 33:mul
0x00000230 rsubk r18, r7, r9 - 34:rsub_carry
0x00000234 bneid r18, -28 - 35:equalZero
0x00000238 addk r10, r10, r4 - 36:add
0x00000218 bslli r3, r7, 1026 - 37l
0x0000021C Iwi r5, r8, 0 - 38:add, 39:load
0x00000220 Iw r4, r11, r3 - 40:add, 41:load
0x00000224 addik r7,r7, 1 ~ 42:add
0x00000228 addik r8, 8, -4 - 43:add
0x0000022C mul r4, r4, r5 = 44:mul
0x00000230 rsubk r18, r7, r9 - 45:rsub_carry
0x00000234 bneid r18, -28 - 46:notEqualZero
0x00000238 addk r10, r10, r4 - 47:add
0x0000023Chbslli r3, r12, 1026 - 48:sll
0x00000240 addik r12,r12, 1 - 49:add
0x00000244 sw r10, r19, r3 - 50:add, 51:store
0x00000248 rsubk r18, r12, r22 - 52:rsub_carry
0x0000024C bneid r18, -68 - 53:equalZero
0x00000250 addik r6, r6, 4 ~ 54:add

Figure 6.23. Assembly code and corresponding grapiperations for thefir Megablock.

130

Table 6.19 contains execution times, in millisecyrdr several implementations of the
pattern detector used to detect Megablocks, exeruin different targets. The execution
times represent the time each implementation nedde@rocess the given number of
addresses (columAddresses The given addresses are repetitions of the éeaddsequence
of thefir Megablock. The values in the colulardware Module at 50MHezorrespond to an
implementation of the architecture described inti®ec5.2, clocked at 50 MHz. It can
process one address every clock cycle. The colihunoBlaze at 50MHzepresents a C
implementation of the algorithm in Figure 4.4, ringndirectly on a MicroBlaze processor
clocked at 50 MHz. ColumiCortex-A8 at 1GHzorresponds to an implementation of the
same algorithm in Java, running on a Cortex-A8 lddcat 1GHz, over the Android 2.2

platform.
Time using Time using a Time using a Speedup (HW
#Addresses Hardware Module MicroBlaze at Cortex-A8 at vs. MicroBlaze /
at 50MHz (ms) 50MHz — C (ms) 1GHz — Java (ms) HW vs. AB)

12 0.0002 2.7 0.6 11,251/2,500

24 0.0005 5.7 1.3 11,963/2,708

48 0.0010 14.0 2.8 14,594/2,917

96 0.0019 30.8 5.9 16,036/3,073

192 0.0038 64.3 12.5 16,757/3,255

384 0.0077 131.5 24.8 17,118/3,229

768 0.0154 265.7 78.7 17,298/5,124

Table 6.19. Execution times for several implementains of the pattern detector for Megablocks.

Generally, the execution times grow linearly witle input (doubling the size of the input
doubles the execution time). There is an exceptidhe Cortex case, where going from 384
addresses to 768 addresses tripled the executi@) instead of doubling. We think this is
due to calls from the system to the garbage calieduring execution of the detector.

When comparing execution speeds, the hardware maslmhuch faster than the software
implementations: around 3,000aster than the Cortex case and around 1&08éter than
the MicroBlaze case. This difference can be explaihy the highly parallel design of the
hardware module, and by the software version natgbéully optimized for the target
platforms. For the tested cases, excluding the riast the execution time of the Cortex
processor is aroundkFaster than the execution time of the MicroBlarecpssor.

Table 6.20 shows average execution times, in mdbsds, when running a Java
implementation of th@ranslationsteps described in Section 5.3, on a Cortex-Agked at 1

GHz over an Android 2.2 platform. THeanslationphase took, on average, about 79 ms to

131

transform the assembly code of the Megablock inufeigs.23 into a mapping configuration
for architectures of the kind described in Secti@S.1 and 5.5.4. The most expensive
operation is the conversion from assembly codeheo graph intermediate representation,
representing 58% of the execution time. Next weehBlacement and the Transform, each
one taking 20% and 12% of the time, respectivelge Tnost light-weight steps are the
Routing and the Normalization, each one with 6% 4tdof the total execution time.

Using the values of Table 6.19 to extrapolate ateton time for the case where we use
an implementation in C, executing in a MicroBlaz&@ MHz, we obtain a total time for the

Translationphase of about 400 ms.

Mapping
Normalize CGraph Transform] Total
onverter Placement Routing
3.03 46.00 9.71 15.45 4.89 79.09
Table 6.20. Average execution times in milliseconds the Trandation steps.
6.7 Summary

In this chapter we analyzed and evaluated the tideedvegablock as a loop for Dynamic
Hardware/Software Partitioning. We used an extensiet of benchmarks from embedded
system domains, and compared our loop detectiomadetith the method used by Warp
[125]. We concluded that the Megablock achievesraye values close to the Warp method,
while providing loops with straight-forward and aiy defined control-flow, which can be
easily converted to data-flow representations.

We estimated the overall application speedup aehiewvith the Megablock, considering
66 benchmarks and several scenarios. Considerifgultienapping parameters, in the
baseline scenario we estimate a speedup afdnd 2.% for theinnerloopsand theunrolled
cases, respectively. Applying graph transformatiand if-conversionincreases the overall
speedup to 18 and 2.4 for the innerloopsand theunrolled cases, respectively. Graph
transformations did not change the performanceifgigntly, but helped in reducing the
number of operations of the Megablock, which caduce the mapping effort and
configuration sizes.

Applying the Megablock pipelining technique can nsfigantly improve the overall
application speedup. Considering this subset ofbédchmarks and loop pipelining with

overlapping schedule, we estimate an average spe&fd8.1x and 5.& for theinnerloops

132

and theunrolled cases, respectively. From the proposed optimizagchniques, Megablock
pipelining was the one with the highest impact erfgrmance.

We observed that, for the architecture parametées,access to memory was a more
limiting factor for the speedup than the numberawvéilable arithmetical/logical FUs. The
speedup values stabilized very quickly for low nemlof arithmetical/logical FUs (e.g.,
between 4 and 8 FUs), while there was still notibeancreases in speedup when considering
the scenario with unbounded memory accesses. Howereeconsider that the differences
were not high enough as to justify the increasedpiexity of using more than 2 concurrent
memory accesses per cycle. The biggest improvemespeedup, when considering the
number of concurrent memory accesses, was congysteémen going from 1 memory access

to 2 concurrent memory accesses.

133

7 Conclusions

The main objective of this thesis was to researcyndnic Hardware/Software
Partitioning (DHSP) techniques, as a way to takeaathge of a reconfigurable processing
unit (RPU) acting as a coprocessor in a generghqaar processor (GPP) based embedded
computing system. The research efforts and expetsneere focused on the development of
algorithms and techniques in the context of dynapuagtitioning, and on the speedups
resultant with the migration of computations frame GPP to the RPU.

We proposed novel techniques for dynamically partibg applications at the binary
level, as well as addressing the automatic mignatibcomputations during runtime from a
GPP to the RPU. As to maximize the impact of dymapairtitioning one must consider large
portions of program execution, an important aspéthis work was to propose a novel kind
of loop structure, attractive for architectures hwihative support to high-degrees of
parallelism. This led us to the Megablock, a loapgnfed by repetitive sequences of
instructions present during program execution. \Wen#l that the Megablock can represent
significant portions of the program execution instnbenchmarks, justifying its use as a
detection unit for dynamic partitioning. Furtherrapibeing the Megablock a loop, it is
inherently akin to hardware reuse and loop pipetjni

The presented work proposes techniques for thetimte identification, implementation,
and transformation of Megablocks, as well as aystidhe impact of using the Megablock as
a detection unit over an extensive set of benchsewksisting of 66 functions/kernels. Using
an automated approach, we were able to evaluatexgpidre the techniques proposed in this
thesis over this set of benchmarks in a varietsitofations.

One of the objectives of this thesis was to tesgemeral approach for dynamic
partitioning. To evaluate the impact on automalycaloving streams of instructions executed
by a GPP to an RPU, we use a set of benchmarkshvdaiecers many situations and code
characteristics, over several execution scenaRather than being tied to a specific RPU, this
thesis explored a number of architecture modetsn fspecific implementations suitable for
the today’s FPGA technology, to models possibley @m future reconfigurable fabrics. We

believe that the work presented tackle these idsydise following reasons:

135

1) As a general principle, we avoided limiting the pe®f the proposed techniques when
possible. For instance, the presented methodolagybe applied to either online or
offline scenarios.

2) The Megablocks are detected through a pattern-nmgtdiechnique which is fully
agnostic to the instruction format of the GPP amoh de applied to traces of
instructions of other processors.

3) Before optimizations and mapping, Megablocks arst fconverted to an RPU
independent Intermediate Representation (IR). Taluawe our techniques in a
different GPP, we only need a translator from thecefic GPP instructions to the IR.

4) Although we provide a concrete example for tifieconversion technique (the
language-processor pair C-MicroBlaze), we proposeernl transformation rules
which can be applied to other language-processobuwtions.

5) Finally, in this thesis we consider two distinct gablock implementations: a first one
using custom designs obtained by a VHDL represemtaif a Megablock with the
option to support pipelining (see Chapter 6, Sacial); and a second one considering
a CGRA coprocessor, suitable for executing diffeMagablocks (see Appendix A).

In order to improve performance, we present a tiecienfor pipelining Megablocks. The
technique simplifies the creation of a pipelinedsie@n of a loop by taking advantage of the
characteristics of the Megablock (e.g., the looptaims only one path). It also presents new
ideas, such as avoiding the implementation of alogy using atomic loop iterations, or
delay the stores to the end of the iteration toichwwtput dependencies and simplify the
implementation of atomic iterations.

The analysis of the related work shows that dynapactitioning can be useful in
embedded systems. Although it is unlikely that apraach for automatic optimization of
general computations will have better results thdrmandcrafted solution, the improvements
achieved by dynamic partitioning can be enough llowaapplications to generally take
advantage of the existence of reconfigurable hamelwaembedded computing systems, as
mapping critical sections by hand for each apphcatand device is too costly to be widely
used.

Warp [13], the work we believe closest to our applo(e.g., uses loops as detection unit),
reports an average speedup ofxéd¥er a set of 15 benchmarks. CCA [91] and DIM [14]

report a speedup of Z3and 2.%, respectively. A comparison with similar benchnsark

136

indicate that we were able to achieve results onwith those found in literature, thanks to
techniques such as inner loop unrolling and logelming.

Our evaluations consider a RPU coupled to a so#-aticroprocessor and the techniques
proposed in this thesis (e.g., graph transformatidoop pipelining). When using the
complete set of 66 benchmarks and the baselinevasisehe default RPU architecture (see
Chapter 6, Section 6.3.1), for timnerloopscase we achieve speedups fromxQid 4.8,
with an average speedup of .(br 1.4x, when using the geometric mean). When activating
unrolling of inner loops, we achieve speedups ffo#x to 6.4, with an average speedup of
2.2x (or 1.6, when using the geometric mean). After applyifrgonversionand graph
transformation techniques, the average speedupsase slightly to 18 and 2.4 when
using the arithmetic mean, and #.@nd 2.%X when using the geometric mean, for the
innerloopsandunrolled cases respectively.

We could apply the loop pipelining technique to @<he 66 benchmarks in the set.
Considering this subset of 61 benchmarks and lgogliping with overlapping schedule, for
theinnerloopscase we achieve speedups fromxG@®28.5¢, with an average speedup of8.1
(or 1.8, when using the geometric mean). When activatingpliing of inner loops, we
achieve speedups from 8.2 32, with an average speedup of %.@r 3x, when using the
geometric mean).

Furthermore, we have implemented a prototype sy&bemtynamic partitioning, based on
an FPGA board (see Appendix A). The prototype idlyfdunctional and runtime
reconfigurable, and is capable of transparently ingpeomputations from a GPP to a RPU
without changing the executable binary. Although pinototype results were contaminated by
high memory access latencies, we estimate reasorsddedups when the CPU directly
accesses data stored in local memories, and watltdlrent type of coupling, the system is
easily adaptable to other CPUs. These results Igleslmow a strong evidence of the

importance of the techniques proposed in this $hesi

7.1 Future Work

In this thesis we deeply explored the Megablockweler, there is room to justify further
research, either with the proposed version of tlegdblock, or with a new, extended version.
For instance, the address conflicts which can appd@en using the Single Address
Identification (SAI) method (Chapter 5, Section)5uually indicate different paths of the

137

same loop. This can be an opportunity for a new lstoucture, which supports several paths
found during runtime; or we can do Megablock meggand automatically create a single
Megablock out of Megablocks with the same starreskl by using-conversiontechniques.

The detection method, together with the represemtatan be extended to detect which
sections of a Megablock correspond to an inner.|l¥dith this information, it can be possible
to reroll inner loops which are too big to fit tteeget hardware; more importantly, it would be
a step forward for supporting inner loops with aiatsle number of iterations. Currently, if
loop unrolling is enabled, each different iteratamunt of unrolled inner loops is detected as a
distinct Megablock.

The transformations that can be used over then@eéiate Representation can be further
explored. We can use transformations that, in amdito the reduction of the number of
operations or the critical path length, also footiser aspects, such as increasing ILP [26].
Transformations can be also used to tailor the Miega to specific units in the target
architecture; to evaluate whether some inputs Megablock are constant through the entire
loop, and specialize the Megablock according tesé¢hconstants. Merging Megablocks can
enable further transformations. For instance gitecompiler for the Xilinx MicroBlaze soft-
core processor includes branch instructions indbe@e to convert 32-bit to 64-bit integer
values. This could be detected and simplified, nangp one of the paths of a merged
Megablock.

As expected, memory accesses were a bottleneckamy mprograms and future work
should consider memory analysis techniques, suclalias analysis. Alias analysis can
determine if two memory operations refer to the eacation (address). This enables
transformations such as elimination retlundant load$130] or scalar replacementwhich
are very effective in the presence of code insebntethe compiler foregister spilling(i.e.,
when due to register pressure, temporary varianesstored in memory). Alternatively, we
may be able to analyze and deal less conservativély data-dependences in order to
increase the parallelism degree. Alias analysssvgell know optimization, but its application
is limited when used in static compilers [131] daenemory address ambiguity. Since some
of the memory addresses that are ambiguous at torwpie can be resolved at runtime,
applying this optimization dynamically can open napportunities.

The use of source-to-source transformations toemphtif-conversionpresents a way to
do hardware/software co-design where instead afgusustom software compilation tools,

new programming languages or language extensibispossible to write plain code in the

138

target language in a suitable way for the hardwaitout having to spend time in low-level
system design details such as the communicatiomelegt the processor and the coprocessor.
Programs can be rewritten in the same target saode to better fit Megablock detection
and/or the mapping to the coprocessor. One posgBkarch avenue is the use of multiple
binaries for the same function and to opt dynartdalthe more suitable binary.

Runtime identification of certain computation patte may allow further improvements
and/or the resolution to apply a certain optimmattechnique. One example would be the
identification that the computations being execwesirelated to loads from a memory region
followed by computations and then storing to aidc$t not overlapping, memory region. This
identification may allow more aggressive loop pipielg techniques.

The mapping process can benefit from the use otiaddl information provided by the
compiler that generated the binaries, or by théyarsaof the binaries prior to their execution.
This additional information would be beneficial forost Megablock optimizations. As an
example, the identification of the array variables@ciated with each load/store in the
execution trace would help loop pipelining andtise of memory banks.

A more advanced approach would use data speculatiobtain optimized Megablocks.
During runtime, the system may track data rangebs specific values for the registers and
based on the probabilities may optimize Megablaxkssidering a certain value in a register.
This may be a viable option for Megablocks witheige-effects as in this case roll-back is

simplified.

139

8 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
[11]

E. Monmasson, L. Idkhajine, M. N. Cirstea, lalBi, A. Tisan, and M. W. Naouar,
"FPGAs in Industrial Control Applications,” ilEEE Transactions on Industrial
Informatics,vol. 7, pp. 224-243, May 2011.

M. D. Hill and M. R. Marty, "Amdabhl's law in #hmulticore era,” irComputer,vol.
41, pp. 33-38, 2008.

Y. Patt, "Future Microprocessors: Multi-core glijg-nonsense, and What We Must Do
Differently Moving Forward,"” inParallel@Illinois Distinguished Lecture Series
2010.

Z. Guo, W. Najjar, F. Vahid, and K. Vissers, uantitative analysis of the speedup
factors of FPGAs over processors,” FPGA '04: Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field ggeonmable gate arrays
Monterey, California, USA, 2004, pp. 162-170.

J. Henkel, "A low power hardware/software p@otiing approach for core-based
embedded systems,” ifProceedings of the 36th annual ACM/IEEE Design
Automation Conferencd 999, pp. 122-127.

S. Hauck and A. DeHonReconfigurable computing: the theory and practide o
FPGA-based computatioMorgan Kaufmann Pub, 2008.

L. J6ézwiak, N. Nedjah, and M. Figueroa, "Modevelopment methods and tools for
embedded reconfigurable systems: A survey,Integration, the VLSI Journakol.
43, pp. 1-33, January 2010.

T. Wiangtong, P. Y. K. Cheung, and W. Luk, "ldesmare/Software Codesign: a
Systematic Approach Targeting Data-intensive Amians,” in IEEE Signal
Processing Magazinepl. 22, pp. 14-22, 2005.

G. Stitt, F. Vahid, and S. Nematbakhsh, "Energsgvings and speedups from
partitioning critical software loops to hardware @mbedded systems,” IACM
Transactions on Embedded Computing Systems (TEQS3, pp. 218-232, 2004.

M. Graphics, "Catapult C synthesis,"htip://www.mentor.con?008.

Y. Ben-Asher, N. Rotem, and E. Shochat, "Hmgdihe best compromise in compiling
compound loops to Verilog," idournal of Systems Architectusal. 56, pp. 474-486,
2010.

141

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

S. Ben Othman, A. Ben Salem, and S. Ben Sat,acceleration for FPGA-based
drive controllers,” in Industrial Electronics (ISIE), 2010 IEEE Internatial
Symposium orpp. 196-201, 2010.

R. Lysecky, G. Stitt, and F. Vahid, "Warp Pessors," inACM Trans. Des. Autom.
Electron. Systyol. 11, pp. 659-681, 2006.

A. C. S. Beck, M. B. Rutzig, G. Gaydadjiev, darL. Carro, "Transparent
reconfigurable acceleration for heterogeneous enddxedpplications,” ifProc. Conf.
Design, Automation and Test in Europe (DATE'Q8unich, Germany, 2008, pp.
1208-1213.

T. Lindholm and F. YellinThe Java virtual machine specificatidrentice Hall PTR,
1999.

T. Kotzmann, C. Wimmer, H. Mdssenbock, T. Rgdez, K. Russell, and D. Cox,
"Design of the Java HotSpot™ client compiler foval®," in ACM Transactions on
Architecture and Code Optimization (TAC®9]. 5, p. 7, 2008.

J. M. Bull, L. A. Smith, L. Pottage, and R.geéman, "Benchmarking Java against C
and Fortran for scientific applications,” iAroceedings of the 2001 joint ACM-
ISCOPE conference on Java Gran@601, pp. 97-105.

R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Mis, and S. G. Robinson, "Binary
translation,” inCommunications of the ACMol. 36, pp. 69-81, February 1993.

B. Case, "Intel Reveals Pentium Implementatidetails," inMicroprocessor Report,
vol. 5, pp. 9-17, 1993.

Apple, "Universal Binary Programming Guidelgé&econd Edition," 2009.

J. C. Dehnert, B. K. Grant, J. P. Banning,JBhnson, T. Kistler, A. Klaiber, and J.
Mattson, "The Transmeta Code Morphing™ Softwarengispeculation, recovery,
and adaptive retranslation to address real-lifellehges,” in Proceedings of the
international symposium on Code generation andnogaition: feedback-directed and
runtime optimizationed: IEEE Computer Society Washington, DC, USAQ2Qop.
15-24.

J. M. P. Cardoso, J. Bispo, and A. K. SanchiEke Role of Programming Models on
Reconfigurable Computing Fabrics,"@hapter Xl in the book: Behavioral Modeling
for Embedded Systems and Technologies: Applicatidas Design and
ImplementationL. Gomes and J. M. Fernandes, Eds., ed: IG| G|@0689.

J. Bispo and J. M. P. Cardoso, "On IdentifyiSsggments of Traces for Dynamic
Compilation," inProc. Intl. Conf. on Field Programmable Logic andpA (FPL'10)
Milano, Italy, 2010, pp. 263-266.

J. Bispo and J. M. P. Cardoso, "Using the Mrgek to Partition Programs for
Embedded Systems at Runtime, INForum 2010 - Il Simposio de Informatjddniv.
do Minho, Braga, Portugal, 2010, pp. 699-710.

142

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

J. Bispo and J. M. P. Cardoso, "On Identifyangd Optimizing Instruction Sequences
for Dynamic Compilation,” inProc. Intl. Conf. on Field-Programmable Tech.
Beijing, China, 2010, pp. 437-440.

J. Bispo and J. M. P. Cardoso, "TechniquesCignamically Mapping Computations
to Coprocessors,” inintl. Conf. on ReConFigurable Comp. and FPGAs
(ReConFig'2011)Cancun, Mexico, 2011, pp. 505-508.

J. Bispo, N. Paulino, J. M. P. Cardoso, an@.JFerreira, "From Instruction Traces to
Specialized Reconfigurable Arrays," Intl. Conf. on ReConFigurable Comp. and
FPGAs (ReConFig’2011ancun, Mexico, 2011, pp. 386-391.

J. Bispo, N. Paulino, J. C. Ferreira, and J.PM Cardoso, "Transparent Trace-Based
Binary Acceleration for Reconfigurable HW/SW Sysginn IEEE Transactions on
Industrial Informatics2012 (under review).

J. Hennessy, D. Patterson, D. Goldberg, andsanovic,Computer architecture: a
guantitative approachMorgan Kaufmann, 2003.

F. E. Allen, "Control flow analysis," iBIGPLAN Not.yol. 5, pp. 1-19, 1970.

J. Von Neumann, "First Draft of a Report oe BDVAC," in Annals of the History of
Computing, IEEEyol. 15, pp. 27-75, 1993.

M. Gokhale and P. S. GrahaReconfigurable computing: Accelerating computation
with field-programmable gate arraySpringer Verlag, 2005.

J. Becker, R. Hartenstein, M. Herz, and U. &ldoger, "Parallelization in co-
compilation for configurable accelerators-a hostéerator partitioning compilation
method," inProceedings of the Asia and South Pacific-Desigroation Conference
(ASP-DAC'98)1998, pp. 23-33.

I. Kuon and J. Rose, "Measuring the gap betwE®GAs and ASICs," inEEE
Transactions on Computer-Aided Design of Integra@ctuits and Systemsol.
26(2), pp. 203-215, 2007.

R. Tessier and W. Burleson, "Reconfigurablenpating for digital signal processing:
A survey," inThe Journal of VLSI Signal Processing]. 28, pp. 7-27, 2001.

J. M. P. Cardoso and P. C. Dinigompilation Techniques for Reconfigurable
Architectures Springer Verlag, 2008.

R. Hartenstein, "A decade of reconfigurablenpaiting: a visionary retrospective,” in
Proceedings of the conference on Design, automatiahtest in Europeed: IEEE
Press Piscataway, NJ, USA, 2001, pp. 642-649.

J. M. P. Cardoso and M. P. Vestistias, "Aretiiires and compilers to support
reconfigurable computing,” iG@rossroadsyol. 5, pp. 15-22, 1999.

143

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

l. Kuon and J. Rose, "Measuring the gap betweleGAs and ASICs," iRroceedings
of the 2006 ACM/SIGDA 14th international symposamField programmable gate
arrays ed: ACM New York, NY, USA, 2006, pp. 21-30.

D. L. Perry,VHDL: McGraw-Hill, 1993.

D. Thomas and P. Moorbyhe Verilog hardware description languag8pringer
Verlag, 2008.

l. Xilinx, "Xilinx ISE Design Suite 12.2," ed,995-2010.

V. Betz, J. Rose, and A. Marquardtrchitecture and CAD for Deep-Submicron
FPGAs.Hingham, Mass: Kluwer Academic, 1999.

G. De Micheli, Synthesis and optimization of digital circuitdlcGraw-Hill Higher
Education, 1994.

Enclustra. (last update in 2008)Wiki FPGA - Virtex-5 LX Available:
http://www.wikifpga.com/index.php?title=Virtex-5 LX

C. Brunelli, F. Garzia, D. Rossi, and J. NurmiA coarse-grain reconfigurable
architecture for multimedia applications supportisgbword and floating-point
calculations," inJournal of Systems Architecturl. 56, pp. 38-47.

S. Shukla, N. W. Bergmann, and J. Becker, "QUK\ Two-Level Reconfigurable
Architecture,” inProceedings of the IEEE Computer Society AnnualpSgiam on
Emerging VLSI Technologies and Architecty306, pp. 109-116.

J. Teifel and R. Manohar, "Highly pipelinedyashronous FPGASs," iRroceedings of
the 2004 ACM/SIGDA 12th international symposiumFeld programmable gate
arrays ed: ACM New York, NY, USA, 2004, pp. 133-142.

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Udm Compilers: Principles, Techniques
and Tools Pearson, 2006.

S. S. MuchnickAdvanced compiler design and implementatiglorgan Kaufmann,
1997.

T. Software. TIOBE Programming Community Index Available:
http://www.tiobe.com/index.php/content/paperinfoifimdex.html

G. De Micheli, R. Ernst, and W. H. WoReadings in hardware/software co-design
Morgan Kaufmann, 2002.

N. Clark, J. Blome, M. Chu, S. Mahlke, S. Bileand K. Flautner, "An Architecture
Framework for Transparent Instruction Set Custotromain Embedded Processors,"
in Proc. 32nd Ann. Intl. Symp. Computer Architectu8CA'05) 2005, pp. 272-283.

T. Kistler, "Dynamic Runtime Optimization," iRroceedings of the Joint Modular

Languages Conference on Modular Programming Langgagd: Springer-Verlag
London, UK, 1997, pp. 53-66.

144

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

L. Baraz, T. Devor, O. Etzion, S. GoldenbekgSkaletsky, Y. Wang, and Y. Zemach,
"|IA-32 execution layer: a two-phase dynamic traimslalesigned to support 1A-32
applications on Itanium/spl reg/-based systems," 3th Annual IEEE/ACM
International Symposium on Microarchitecture (MICR®), 2003, pp. 191-201.

A. Chernoff, M. Herdeg, R. Hookway, C. Reete, Rubin, T. Tye, S. B. Yadavalli,
and J. Yates, "FX! 32: A profile-directed binararslator,” inlEEE Micro, vol. 18,
pp. 56-64, 1998.

F. Bellard, "QEMU, a Fast and Portable Dynamranslator," inProceedings of the
USENIX Annual Technical Conference, FREENIX Tr2€K5, pp. 41-46.

J. K. Paek, K. Choi, and J. Lee, "Binary aecalion using coarse-grained
reconfigurable architecture,” RCM SIGARCH Computer Architecture Newal, 38,
pp. 33-39, 2011.

E. Mirsky and A. DeHon, "MATRIX: a reconfigupée computing architecture with
configurable instruction distribution and deployalesources,” IREEE Symposium
on FPGAs for Custom Computing Machii€96, pp. 157-166.

E. Waingold, M. Taylor, V. Sarkar, W. Lee, Yoc Lee, J. Kim, M. Frank, P. Finch, S.
Devabhaktuni, R. Barua, J. Babb, S. Amarasinghe,/AanAgarwal, "Baring it all to
software: Raw machines," @omputeryol. 30, pp. 86-93, 1997.

B. Mei, S. Vernalde, D. Verkest, H. De Man,daR. Lauwereins, "ADRES: An
Architecture with Tightly Coupled VLIW Processor dan Coarse-Grained
Reconfigurable Matrix," inField-Programmable Logic and Applicationsd, 2003,
pp. 61-70.

T. Miyamori and K. Olukotun, "A Quantitative nalysis of Reconfigurable
Coprocessors for Multimedia Applications,” lEEE Symposium on FPGAs for
Custom Computing Machingsp. 2-11, 1998.

H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, Bagherzadeh, and E. M. C. Filho,
"MorphoSys: an integrated reconfigurable systemdiata-parallel and computation-
intensive applications,” iIlEEE Transactions on Computergol. 49, pp. 465-481,
2000.

J. R. Hauser and J. Wawrzynek, "Garp: a MIRS8cgssor with a reconfigurable
coprocessor,” imMhe 5th Annual IEEE Symposium on FPGAs for Custompting
Machines 1997, pp. 12-21.

Z. A. Ye, A. Moshovos, S. Hauck', and P. Baer "CHIMAERA: a high-
performance architecture with a tightly-coupledorgagyurable functional unit," in
Proceedings of the 27th International SymposiumComputer Architecture2000,
pp. 225-235.

S. C. Goldstein, H. Schmit, M. Budiu, S. CadamM. Moe, and R. R. Taylor,
"PipeRench: a reconfigurable architecture and ctampiin Computer,vol. 33, pp.
70-77, 2000.

145

[67] V. Baumgarte, G. Ehlers, F. May, A. Ntickel, Wbrbach, and M. Weinhardt, "PACT
XPP—A Self-Reconfigurable Data Processing Architest’ inJ. Supercomputyol.
26, pp. 167-184, 2003.

[68] C. Ebeling, D. C. Cronquist, P. Franklin, Jec8sky, and S. G. Berg, "Mapping
applications to the RaPiD configurable architectunem The 5th Annual IEEE
Symposium on FPGAs for Custom Computing Machir@37, pp. 106-115.

[69] C. Lattner and V. Adve, "LLVM: A CompilationrBmework for Lifelong Program
Analysis & Transformation,” innternational Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optatian, Palo Alto, California,
2004, pp. 75-88.

[70] K. Bondalapati, P. Diniz, P. Duncan, J. Graaa®l. Hall, R. Jain, and H. Ziegler,
"DEFACTO: A design environment for adaptive compgttechnology,” inParallel
and Distributed Processingp. 570-578, 1999.

[71] Y. Yankova, G. Kuzmanov, K. Bertels, G. Gaygead Y. Lu, and S. Vassiliadis,
"DWARYV: DelftWorkbench Automated Reconfigurable VHDGenerator,"” inl17th
International Conference on Field Programmable loogind Applications (FPL)
2007, pp. 697-701.

[72] V. Bala, E. Duesterwald, and S. Banerjia, "Byro: a transparent dynamic
optimization system," irProceedings of the ACM SIGPLAN 2000 conference on
Programming Language Design and Implementatidancouver, British Columbia,
Canada, 2000, pp. 1-12.

[73] W. M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. Bhang, N. J. Warter, R. A.
Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohaemd G. E. Haab, "The
superblock: an effective technique for VLIW and exggalar compilation,” imhe
Journal of Supercomputingol. 7, pp. 229-248, 1993.

[74] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mkelin, M. R. Haghighat, B. Kaplan,
G. Hoare, B. Zbarsky, and J. Orendorff, "Trace-dgsst-in-time type specialization
for dynamic languages,"” 2009, pp. 465-478.

[75] N. Clark, H. Zhong, and S. Mahlke, "Processmceleration through automated
instruction set customization," B6th International Symposium on Microarchitecture
2003, pp. 129-140.

[76] R. Lysecky and F. Vahid, "Design and implenagioin of a MicroBlaze-based warp
processor,” INRCM Transactions on Embedded Computing Systeohs8, pp. 1-22,
2009.

[77] S. Singh, J. Rose, P. Chow, and D. Lewis, "€ffect of logic block architecture on
FPGA performance," inEEE Journal of Solid-State Circuitspl. 27, pp. 281-287,
March 1992.

[78] P.Chow, S. O. Seo, J. Rose, K. Chung, G. R&mzz6n, and |. Rahardja, "The design
of an SRAM-based field-programmable gate arrayt jpaArchitecture,” inIEEE

146

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]
[91]

Transactions on Very Large Scale Integration (VLSystems (TVLSIyol. 7, pp.
191-197, 1999.

A. Marquardt, V. Betz, and J. Rose, "Speed argh tradeoffs in cluster-based FPGA
architectures," ifEEE Trans. Very Large Scale Integr. Syabl, 8, pp. 84-93, 2000.

G. Stitt, R. Lysecky, and F. Vahid, "Dynamiarbdware/software partitioning: a first
approach," inProceedings of the 40th conference on Design auiomaed: ACM
New York, NY, USA, 2003, pp. 250-255.

R. Lysecky and F. Vahid, "On-Chip logic minimation," inProceedings of the Design
Automation Conference (DAC)003, pp. 334-337.

R. Lysecky, F. Vahid, and S. Tan, "Dynamic FP&uting for just-in-time FPGA
compilation,” inProceedings of the Design Automation ConferenceQD2004, pp.
954-959.

R. Lysecky, F. Vahid, and S. Tan, "A studytbé scalability of on-chip routing for
just-in-time FPGA compilation,” inProceeding of the Symposium on Field-
Programmable Custom Computing Machines (FCCAIPS5, pp. 57-62.

V. Betz and J. Rose, "VPR: A new packagingcpiment, and routing for FPGA
research,” irProceeding of the Internation Workshop on Field gteonmable Logic
and Applications (FPLA)1997, pp. 213-222.

D. Brelaz, "New methods to color the vertiagflsa graph,” inCommunications of
ACM,vol. 22, pp. 251-256, 1979.

G. Memik, W. H. Mangione-Smith, and W. Hu, "tdench: A benchmarking suite for
network processors," iRroceedings of the 2001 IEEE/ACM international epehce
on Computer-aided desigad: IEEE Press Piscataway, NJ, USA, 2001, ppt239-

C. Lee, M. Potkonjak, and W. H. Mangione-SmittMediaBench: a tool for
evaluating and synthesizing multimedia and commatoits systems," iRroceedings
of the 30th annual ACM/IEEE international symposiom Microarchitecture ed:

IEEE Computer Society, 1997, pp. 330-335.

EEMBC. (2005).The Embedded Microprocessor Benchmark ConsortAvailable:
http://www.eembc.org

A. Malik, B. Moyer, and D. Cermak, "A low poweunified cache architecture
providing power and performance flexibility (postssion)," inProceedings of the
2000 international symposium on Low power electsrand designed: ACM New
York, NY, USA, 2000, pp. 241-243.

[. Xilinx, "Microblaze Processor Reference @&iv13.4," inreference manuak011.

N. Clark, M. Kudlur, H. Park, S. Mahlke, and. IKlautner, "Application-Specific
Processing on a General-Purpose Core via Tranddastruction Set Customization,”
in Proc. 37th Ann. IEEE/ACM Intl. Symp. MicroarcRortland, USA, 2004, pp. 30-
40.

147

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

P. Yu and T. Mitra, "Characterizing Embeddegbphcations for Instruction-Set
Extensible Processors,” IDAC '04: Proceedings of the 41st annual conferemice
Design automation2004, pp. 723-728.

F. Spadini, M. Fertig, and S. J. Patel, "Cltgazation of repeating dynamic code
fragments,” Technical Report CHRC-02-09, Universit§ lllinois at Urbana-
Champaign2002.

K. Atasu, L. Pozzi, and P. lenne, "Automatipphlcation-specific instruction-set
extensions under microarchitectural constraints,Pioceedings of the 40th Design
Automation Conferen¢c003, pp. 256-261.

S. J. Patel and S. S. Lumetta, "rePLay: A war@ framework for dynamic
optimization," inlEEE Transactions on Computexsl. 50, pp. 590-608, June 2001.

J. L. Henning, "SPEC CPU2000: Measuring CPUrfgimance in the new
millennium,” inComputeryol. 33, pp. 28-35, 2000.

A. C. Beck, M. B. Rutzig, G. Gaydadjiev, and Carro, "Run-Time Adaptable
Architectures for Heterogeneous Behavior Embeddgstefhs,” inProc. 4th Intl.
Works. Reconf. Comput.: Architectures, Tools anglidations 2008, pp. 111-124.

J. Burns and J. L. Gaudiot, "SMT layout ovextieand scalability,” inlEEE
Transactions on Parallel and Distributed Systepys,142-155, 2002.

J. E. Smith, "A study of branch predictionaséygies,” inBth International Symposium
on Computer Architectur#981, pp. 135-148.

E. Z. Bem and L. Petelczyc, "MiniMIPS: a silaion project for the computer
architecture laboratory," IBIGCSE '03NY, USA, 2003, pp. 64-68.

M. R. Guthaus, J. S. Ringenberg, D. ErnstMTAustin, T. Mudge, and R. B. Brown,
"MiBench: A free, commercially representative emibedl benchmark suite," iEEE
International Workshop on Workload CharacterizatMwC-4 ed, 2001, pp. 3-14.

V. Allan, R. Jones, R. Lee, and S. Allan, ft8@re pipelining,” inACM Computing
Surveys (CSURYpl. 27, pp. 367-432, 1995.

B. R. Rau, "lterative modulo scheduling: Agaithm for software pipelining loops,"
1994, pp. 63-74.

Y. Ben-Asher and N. Rotem, "Synthesis for ighle Pipelined Function Units," in
International Symposium on System-on-Chip (S@@&npere, Finland, 2008, pp. 1-4.

G. M. Amdahl, "Validity of the single processapproach to achieving large scale
computing capabilities,” i®pring Joint Computer Conferend®67, pp. 483-485.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. hlg and R. A. Bringmann, "Effective
compiler support for predicated execution using lliperblock,” inProc. 25th Ann.
Intl. Symp. on Microarched: IEEE Computer Society Press, 1992, pp. 45-54.

148

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]
[116]

[117]

[118]

[119]
[120]

[121]

[122]

J. V. Leeuwen,Handbook of Theoretical Computer Science: Algorghm@nd
Complexity MIT Press 1990.

M. G. Main and R. J. Lorentz, "An O(n logalgorithm for finding all repetitions in a
string," inJournal of Algorithmsyol. 5, pp. 422-432, 1984.

D. Gusfield and J. Stoye, "Linear time alg¢fams for finding and representing all the
tandem repeats in a string," Journal of Computer and System Sciengeg, 69, pp.
525-546, 2004.

J. Bispo, Y. Sourdis, J. M. P. Cardoso, andV3ssiliadis, "Regular Expression
Matching for Reconfigurable Packet Inspection,lREE International Conference on
Field Programmable Technology (FPT'Q@angkok, Thailand, 2006, pp. 119-126.

J. Bispo and J. M. P. Cardoso, "Synthesi®Refular Expressions for FPGASs," in
International Journal of Electronics (IJEyol. 95, pp. 685-704, Taylor & Francis,
January 2008.

P. Hsieh. (2008). Hash functions Available:
http://www.azillionmonkeys.com/ged/hash.html

W. Sheng, W. He, J. Jiang, and Z. Mao, "Puitomatic Task Compilation Flow from
C to REmus Coarse Grain Reconfigurable Media Psmegsin JCIT: Journal of
Convergence Information Technologg]. 6, pp. 193-202, 2011.

G. Kuzmanov, G. Gaydadijiev, and S. VassiBatiThe MOLEN processor prototype,"”
in 12th Annual IEEE Symposium on Field-Programmablest@ua Computing
Machines (FCCM)2004, pp. 296-299.

D. D. GajskiPrinciples of Digital DesignPrentice Hall, 1996.
ISO, "ISO/IEC 9899:TC2 Committee Draft,” &005.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinno#dan, and D. B. Shmoys, "Chapter 9
Sequencing and scheduling: Algorithms and compfgxim Handbooks in Operations
Research and Management Sciena®. Volume 4, A. H. G. R. K. S.C Graves and P.
H. Zipkin, Eds., ed: Elsevier, 1993, pp. 445-522.

H.-P. Rosinger, "Connecting Customized IRhe MicroBlaze Soft Processor Using
the Fast Simplex Link (FSL) Channel," XAPP529 (y1)3ilinx2004.

J. Bispo. (2011 Megablock Tool SuitAvailable:http://suikasoft.com/specs/

I. Xilinx, "Microblaze Software Reference @g&iv2.2," inreference manual002.

B. H. Fletcher, "FPGA Embedded ProcessorsveRling True System Performance "
Memec, Embedded Training Program - Embedded Syst@wosference (San
Francisco), 2005.

P. Alfke, "Xilinx Spartan-6 FPGA User Guidete," ed. EE Times - Design: UBM
Electronics, 2009.

149

[123] E. A. Lee, "Programmable DSP ArchitectureartR,” in ASSP Magazine, IEEROI.
5, pp. 4-19, 1988.

[124] F. Vahid, G. Stitt, and R. Lysecky, "Warp pessing: Dynamic translation of binaries
to FPGA circuits," inComputeryol. 41, pp. 40-46, 2008.

[125] A. Nair and R. Lysecky, "Non-intrusive dynanapplication profiler for detailed loop
execution characterization," international Conference on Compilers, Architecture
and Synthesis for Embedded Syste#68, pp. 23-30.

[126] N. Paulino, "Generation of Reconfigurable Gits from Machine Code," Master
Thesis, Engineering Faculty, FEUP, Porto, Portug@l,1.

[127] V. Zivojnovic, J. M. Velarde, C. Schlager,daH. Meyr, "DSPstone: A DSP-oriented
benchmarking methodology,” iaroc. of the Intern. Conf. on Signal Processing and
Technology1994, pp. 715-720.

[128] Honeywell. (2012). Availablénttp://honeywell.com/Pages/Home.aspx

[129] E. Burnette,Hello, Android: introducing Google's mobile devetognt platform
Pragmatic Bookshelf, 2009.

[130] A. Diwan, K. S. McKinley, and J. E. B. Mos%Type-based alias analysis," in
Proceedings of the ACM SIGPLAN 1998 Conference mgrBmming Language
Design and Implementatidviontreal, Quebec, Canada, 1998, pp. 106-117.

[131] D. W. Wall, "Limits of instruction-level pallalism,” in Fourth International
Conference on Architectural Support for Programmirgnguages and Operatings
Systems1991, pp. 176-188.

[132] Digilent, "Atlys Board Reference Manual,” 201

150

Appendix A — SRA Implementation

In the context of this thesis and of an MSc thesiscluded at FEUP (Faculty of
Engineering of the University of Porto), it was dmped a prototype system for dynamic
partitioning based on an FPGA board [27, 126]. $istem implements some of the ideas
presented in this thesis and can automatically maveuntime, loops from a MicroBlaze
executable binary to a Reconfigurable Processing (RPU). We use Megablocks as the
partitioning unit. The Megablock detection is dai#tine, through cycle-accurate simulation
of applications during a profile phase. The detddtkegablocks are transformed into the IR,
which is used to create an RPU tailored to the afiete Megablocks. The RPU is an
implementation of the SRA architecture (see Sedié3), is runtime reconfigurable and can
use several configurations during a single progeaectution. The implementation uses Single
Address Identification (SAI — see Section 5.4)dentify the Megablocks detected during the
profiling phase. In our current implementati@gtectionand Translation(i.e., generation of
the RPU) is done offline, whilédentification and Replacemenis done online, without
changes in the executable binary.

Figure A.1 shows the general architecture of théemtded system prototype, which
consists of a GPP (a Xilinx MicroBlaze soft-coretins case) and a loosely coupled RPU,
both connected to the system bus (in this caseoeeBsor Local Bus — PLB). To avoid
modifications to the GPP, we use an Injector modulech monitors the instructions
executed by the GPP and communicates with the Rgooation Module (RM) to trigger the
use of the RPU. The RM is responsible for the Rtbmfiguration. The program code
executed by the GPP is in external memory (DDR2)e prototype was designed for an
FPGA environment: instead of proposing a singlgatbose RPU, we developed a tool chain
which generates the HDL description of an RPU tadofor the application to be run on the
system. This step is done automatically.

The target architecture was implemented on a Ximartan-6 LX45 FPGA [122] and a
Digilent Atlys board [132] was used to run the epées.

151

CPU DDR2

[
Injector — RM

Bus ‘ ‘

Reconfigurable Processing Uni

=

Figure A.1. System Architecture (source: [27]).

Figure A.2 presents the main components of the Riad Figure A.3 illustrates a possible
array of FUs of an RPU. The RPU uses a peripherslifterface unit to feed operands and
retrieve results through memory mapped registeng. drray of FUs contains all the blocks
necessary to execute the previously detected Medehl The array of FUs is organized in
rows with variable number of single-operation FUsan operation has a constant input, the
RPU generation process tailors the FU to that infeuy., bra FU in Figure A.3). The
implementation supports arithmetic and logic operst with integers, including carry
operations. Crossbar connections are used betwegaceat rows, and are runtime
reconfigurable, allowing the use of multiple Megatis during the execution of a program.
Connections spanning more than one row are edtalliby pass-through FUpassFUs in
Figure A.3). RPU configuration is performed by wrif to configuration registers. These
registers control the routing of the operands tghowhe RPU and indicate which exit

conditions should be active.

PLB Bus
I

. Reconfigurable Processing Uni
PLB Slave interface

I I I]]
‘ N x Inputs‘ M x Routing ‘ Feedback‘ Masks‘ Start‘ LxOutput‘ Statust:l:m@j
J J

=

Y | - Write only
Array of | (tfc:ﬁilr%? Read only|

FUs
Exit conditions Results ﬁl

Figure A.2. RPU Architecture (source: [27]).

The RPU was specifically designed to run loops witle path and multiple-exits, such as
Megablocks. The number of iterations of the loopsiamot need to be known before
execution: the RPU keeps track of the exits po{etg., bne FU in Figure A.3) of the
Megablock and signals when an exit occurs (viaatustregister). When this happens the

152

current iteration is discarded, and execution resumm the GPP at the beginning of the
iteration. In the current version of the RPU, glemtions complete within one clock cycle

and each iteration takes as many clock cycleseaaumber of rows (depth) of the RPU.

\ N Input registers |

Status
(N * RowO inputs) swiches -
‘ ‘ ‘ 13 |Constant %
S

value
add add bra operator

(ROW(T Outputs * Rowl Input‘s) switches |

— RowO

anl pass pass
\ \ \

(Row1 Outputs * Row2 Inputs) switches]

sub bne
‘ Exit condition(s)

|0JJU0D Uole.B]|

— Row1l

Row 2

\ (M * Row2 outputs) swiches |

\ M Output registers |

Figure A.3. Array of FUs (source: [27]).

Figure A.4 shows the architecture of the PLB Igectesponsible for interfacing the GPP
with the rest of the system, as well as for stgrtime reconfiguration process. Each RPU
configuration is associated to a single instructiddress.

Opcod§ ‘cpu PC
——| PLBPassthrough ———
o=
&
vy B
g ToRM
Megablock XI)
Addresses mEl
Master
N FSL —
Switch ¥ From RM
— PLB Passthrough }—‘
From PLBf % To PLB
Bus Bus

Figure A.4. PLB Injector Architecture (source: [27]).

The Injector monitors the instruction addressesqileon the bus by the GPP until it sees
the start of a Megablock. The Injector then stdhe execution of the GPP while
reconfiguration is occurring and communicates theghblock ID to the RM. After
reconfiguring the RPU, the RM sends instructionsh® Injector with in turn are fed to the

GPP. The instructions will cause the GPP to bratacla memory position containing a

153

previously prepared Communication Routine (CR). @&ecuting it, the GPP copies the
contents from its register file to the appropriatput registers of the RPU. When the RPU
execution ends, the GPP completes the CR by retgdte values from the output registers
of the RPU and resumes execution of the prograne.cdtlis way, we can change the
execution flow of the GPP without overwriting thegmal instructions of the program, nor
interfering with the original software tool chain.

We developed a tool suite to extract the Megabloeiap them to the RPU, and generate
the configuration bits. The input of the tool i® texecutable file (i.e., the ELF file). The tool
suite uses a cycle-accurate simulator of the Miam® to monitor execution traces. The
detected Megablocks are then processed by two: tooésgenerates Verilog descriptions for
the RPU and the Injector, and the other generdiesQRs for the GPP. The Verilog
generation tool parses Megablock information, aeitees FU sharing across graphs, assigns
FUs to rows, adds pass-through units, and genefilgescontaining the placement of FUs.
FUs are shared between different Megablocks, satcany given time there is only one
Megablock executing in the RPU. The tool also getesr routing information to be used at
runtime (configuration of the inter-row switchea} well as the data required for Megablock
Identification The generated RPU is tailored to a specific $eMegablocks; switching
between members of this set is accomplished byigunmfig the inter-row switches. Input
values in the GPP’s register file, needed at ruation Megablock execution, are transmitted
to the RPU by executing the CRs on the GPP.

Figure A.5 presents speedups for two scenarioshdrfirst one, referred as DDR case,
results are obtained from execution on the FPGAranding the kernels from DDR memory.
The execution times were measured using timers séhend set of results (BRAM case) was
obtained by estimation, considering that the pnograare stored in internal memory
(BRAMS). Results include all communication overhead/e present values for a set of 6
benchmarks, a weighted average of the set andthesimbenchmark which combines the 6
benchmarksrfierge-al).

In the DDR scenario, the MicroBlaze has a 23 cymmalty for each instruction it
executes. Most of the achieved speedup comes fvoidiag execution of instructions in the
GPP and executing operations on the RPU insteadetssr, for each call to the RPU, the
GPP executes a CR which passes the values to tdeétRRdugh the bus. Since the CRs are in
DDR, they also incur that penalty. The DDR accagsncy is the main contributor to the very

154

high overhead of this scenario (approximately 9204he total execution time, on most

cases).
10
18,2
9 = DDR
8 B BRAM (Estimation) 7.9
7
26
®5
2
w4
3
2 - 1 3 1 o 1 5 1 2 1 6 14
1
0
\8 S A \
°°““e\, on® &\boﬁ"“C m“““?’ e\"*‘5 %\\xed 3\'?’ exee™

Figure A.5. Speedups for DDR and BRAM scenario (seooe [27]).

The situation is aggravated by the relatively lowmier of instructions moved by
Megablock call (around 200 instructions executed Ipep, in most cases). The overhead
includes the identification of the Megablock, cguifiation of the RPU and execution of the
CR. Since the RM fetches instructions from localmmoees, a large part of the overhead
comes from executing the CRs in the GPP afterwdrds.speedups measured for the DDR
scenario include all overheads and range from &094.8..

The BRAM scenario is the best possible case forMinroBlaze processor regarding
performance. When considering the BRAM scenarie, sheedups and the overheads are
significantly reduced, as there is no longer a higimalty for fetching instructions from
memory (and as a consequence, the MicroBlaze ee®the program faster). We used a
cycle-accurate MicroBlaze simulator to calculate tbxecution time on the GPP. We
considered the same overheads of the DDR scen&fgoestimated the execution time for
CRs considering an average of 1.18 cycles per ¢éxé@c¢astruction, and added a PLB latency
of 9 cycles to write/read operands/results to/frita RPU. RPU execution cycles were
calculated by multiplying the RPU’s depth and thember of iterations. We estimate
speedups between 1X03and 2.0% (including all overheads).

In both scenarios the speedup of the synthetic Hmeak merge-allis lower than the
speedup of the weighted average. This is mostlytadlee overhead of RPU reconfiguration,
which only happens in theerge-allcase.

Table A.1 characterizes the FPGA implementatiorthef RPUs. The maximum clock
frequencies of the RPUs for individual benchmar&sged from 85 to 139MHz, which is

155

above the clock frequency of the MicroBlaze. Indual RPUs do not use more than 9%
(2369) of the LUTs and 2% (1170) of the FFs. Therge-allRPU uses about 55% of the

LUTs and 27% of the FFs that would be needed iRR& was generated with no sharing of
FUs.

FPGA Implementation
Kernels

Max.
LUTs FFs Freq(MH2)
count 1433 926 99.30
even_ones 2331 1153 132.83
fibonacci 2369 1170 121.56
hamming 1739 1086 138.08
pop_cnt 1758 1058 137.97
reverse 1780 1072 139.06
merge-all 6325 1719 85.19

Table A.1. RPU FPGA Implementation

156

Appendix B — Additional Results

In Chapter 6 we presented several figures withltesvhich were calculated using
the arithmetic mean. In this Appendix we preserttlaer version of the same figures,

which use the geometric mean to calculate the geeralues.

B-1 Baseline Geometric Means

3 4
2.5 35
3,
e 2T ——————+—+— 25 1 S — ——
S —r" ° | —— * & <> <> <> < &>
T 1s & 21 = K —
[}
&, 15
,ﬂiiiiiii
1
0.5 0.5
o 0
1 2 3 4 5 6 7 8 o

Max. load/store units per line

=&=no-ifs == no-ifs unrolled ifs ==e=ifs-unrolled

a) b)

Figure B.1. Average a) speedup and b) IPC in the kaline case when varying the maximum

number of load/store units (geometric mean).

1 2 3 4 5 6 7 8 9 10 16 32 64 «
Max. arithmetic/logic units per line

=&—no-ifs == no-ifs unrolled ifs ==e=ifs-unrolled

a) b)

Figure B.2. Average a) speedup and b) IPC in the saline when varying the maximum number

of arithmetic/logic units (geometric mean).

157

3.5
3 M
o 25
=]
3, M
P2 e
v 15
B e s A
0.5
0 T T T T T T T T T T]

1 11 12 13 14 15 16 17 18 19 2
RPU/GPP clock ratio

=®—no-ifs ==no-ifsunrolled =h=ifs ===ifs-unrolled

Figure B.3. Average speedup in the baseline case evhvarying the ration between the RPU and
GPP clock (geometric mean).

B-2 If-Conversion Geometric Means

25 4
35
2 ./.___.—H—I—I—I—".7 34
215 - 25 1
£ ————0————o————0—0 g 2 p—t—————f——
8 ~— > =
LENFRERVEES S . 15
1
035 0.5
o 0 ; - - : : - - :)
1 2 3 2 5 6 7 8 - 1 2 3 4 5 6 7 8 o
Max. load/store units per line
—o—ifs (adapted) —=ifs-unrolled (adapted) ==h=—ifs ==é=ifs-unrolled
a) b)
Figure B.4. Average a) speedup and b) IPC for adaptl code when varying the maximum
number of load/store units (geometric mean).
2 35
3
25
2
-§ g 15
& 1
0.5
o+
o 1 2 3 4 5 6 7 8 9 10 16 32 64 w
Max. arithmetic/logic units per line

1 2 3 4 5 6 7 8 9 10 16 32 64 o
—o—ifs (adapted) ~=ifs-unrolled (adapted) «h—ifs «=é=ifs-unrolled

a) b)

Figure B.5. Average a) speedup and b) IPC for adaptl code when varying the maximum

number of arithmetic/logic units (geometric mean).

158

Speedup
-
w

1 11 12 13 14 15 16 17 18 19 2
RPU/GPP clock ratio

—4—ifs (adapted) ==ifs-unrolled (adapted) =h=—ifs ==<4=ifs-unrolled

Figure B.6. Average speedup for adapted code whemanying the ration between the RPU and

GPP clock (geometric mean).

B-3 Pipelining (Sequential Schedule) Geometric Means

Max. load/store units per line

== no-ifs == no-ifs unrolled —A—ifs (adapted) =><=ifs-unrolled (adapted)
a) b)

Figure B.7. Average a) speedup and b) IPC for adaptl code when varying the maximum

number of load/store units (geometric mean).

3 9
8
- W—% 7 ———
L2 / ?7
=] I8} 4
2 s / A &4
2 At —b———d—d—i—h
@ / 3 14
! O 2
0.5 L
0 T T T T T T T T T T T T T 1
0 T T T T r v T v T r T r T , 1 2 3 4 5 6 7 8 9 10 16 32 64 o
1 2 3 4 5 6 7 8 9 10 16 32 64 o Max. arithmetic/logic units per line

=== no-ifs == no-ifs unrolled == ifs (adapted) =>=ifs-unrolled (adapted)
a) b)

Figure B.8. Average a) speedup and b) IPC for adaptl code when varying the maximum

number of arithmetic/logic units (geometric mean).

159

0 T T T T T T T T T T !
1 11 1.2 13 14 15 16 17 18 19 2
RPU/GPP clock ratio

=== n0-ifs == no-ifs unrolled == ifs (adapted) =>&=ifs-unrolled (adapted)

Figure B.9. Average speedup for adapted code wheanying the ration between the RPU and
GPP clock (geometric mean).

B-4 Pipelining (Overlapping Schedule) Geometric Means

Max. load/store units per line

== n0-ifs == no-ifs unrolled = ifs (adapted) ifs-unrolled (adapted)

a) b)

Figure B.10. Average a) speedup and b) IPC for adégd code when varying the maximum
number of load/store units (geometric mean).

3.5 12

~
N w
?\
p
b
4
b
4
p
4
p
4
}
>
N
> o ® O
P

o
L/ :
5 o . %
FESER 4 //‘—_' o el
1 x 2
05 I S ——
ol 1 2 3 4 5 6 7 8 9 10 16 32 64 o
1 2 3 4 5 6 7 8 9 10 16 32 64 o Max. arithmetic/logic units per line
== no-ifs == no-ifs unrolled = ifs (adapted) =>¢=ifs-unrolled (adapted)
a) b)

Figure B.11. Average a) speedup and b) IPC for adégd code when varying the maximum
number of arithmetic/logic units (geometric mean).

160

5
4_
o
3 0
R —0
& M , —a
n N " - L =
27‘__4-—"'—‘—';
1

1 1.1 1.2 1.3 14 15 1.6 1.7 18 1.9 2
RPU/GPP clock ratio

=== n0-ifs =fll=no-ifs unrolled == ifs (adapted) =>¢=ifs-unrolled (adapted)

Figure B.12. Average speedup for adapted code whearying the ration between the RPU and
GPP clock (geometric mean).

161

Appendix C — Tools

We developed a number of software tools to evalaatevalidate the techniques proposed
in this thesis. The tools are available online [L¥8e include below screenshots of the most
relevant software tools developed in the contexthig thesis: Megablock Extraction (see
Figure B.9), Megablock Estimation (see Figure BVBHIDL for Megablocks (see Figure B.9)
and VHDL for Megablock Detector (see Figure C.4).

|| Megablock Extractor for MicroBlaze v0.1 o || Megablock Extractor for MicroBlaze w0.1 o
|m| Options ‘ | Prugram‘ Options |
|ﬁ' m- Selected file: 'default.config' | save | Saveas.. | Selected file: ‘default.config!
{Input/Qutput) - Write Megablock Stats: ¥ -
Input Files (File Or Folder); .,’_elfsfﬁr-ol‘alf i I (Graph Operations Latendes)
Output Folder: foutput Use One Cycle Latendies: |}

\Write Program Cydes: %ml with Weights (file will be generated if does not exist):

(MegaBlock Detection Options)

o =

Wirite Program Trace (txt):
Executed Instructions Threshold {int): | 1

\Write Program Trace (dotty): [¥] £
Max Pattern Size (int): 32
Generate Coverage Chart: [¥] -
Trace Unit: BasicBlock -
Beautify Chart: I
fy = Unroll Inner Loops: 1
Write Trace Execution Xml: [¥] (Chart Basics)
Write Trace Execution Stats: (7] I Save Chart: £
\Write Megablock Assembly: [7] Chart File Format: PNG
Virite Megablock Data: & Display Chart: i)
(Megablock Info) Drawing Width {int): |640
\Write Megablock {xml): [1
< Lol @l Drawing Height {int): 420 =
\irite Megablock (datty): [

Scale Factor (int): 1.
Dotty Connections: \data - ‘ Remove | | Options: | Add | J(i\:q\g.—osr\aze Simulator 6;;&1:9;15}

Write Megablock {parsablegraph): [Verbose:)

Write Megablock Stats: ® Output File: . fsystem.out

(-G}a'ﬂh' 'b'pe'raﬁgns' Lﬁ‘te‘ncies)“ Detect Writes In The Instruction Memory: [¥] =

a) b)

Figure C.1. Options for program Megablock Extractor.

163

-
|| Megablock Estimation for MicroBlaze vw0.1

|

(CGRA 1D {FUs -> Interconnect))
Default Group Name: arithm-ogic

Default Group Fus (nt): |8 |

Exits Per Line (nt): |t |
Fu Groups: [1Fu Group =) E [Fu Group. | [add
Name: llod-store |

Number Of Fus {(int): \.2. .\

Supported Operations: | load | Options: | add

Program | Options | il
Selected file: ‘memoryless-original-noifs'
Path To EIf Files: | =
Megablock Extraction Folder: '_ E _Le?:k_ ax}racﬁon |
Qutput Folder: .fmegablock_estimation |

”’ Xml Loading Type: :eager - i
Write Detection Results: [Fl
Detection Average Type: :_an{hnemwean = |
Detection Results Base: fdetection_results |
Wirite Estimation Results:
Estimation Results File:
Wirite Individual Speedups:
Write Individual Op Tnst Ratio: [7]

I {Megablack Estimator for MicroBlaze) H
SRS sy S—
Constant Propagation {single pass): 5]
Remove “add zero” Operations: Il
Transform Mul To Mux: F1
Coprocessor To Processor Clock Ratio (double): 31?
Memory Model To Use: SerializeStoreOps =
Estimator Modifier: ij:lormal" v'

(CGRA 1D (FUs - Interconnect)} =l
a)
r = =
|| Megablack Estimation for MicroBlaze 1.1
Proaram ‘ Options | I
Selected file: ‘memoryless-original-noifs'
-

Transform Mul To Mux:)
Coprocessor Ta Processor Clock Ratio (double): LIJI‘U
Memory Model To Use; EW:

| Estimator Modifier: ’norma? =

Show Mapping: [7]

(Graph Operations Latencies)
Use One Cyde Latencies: /|

Xml with Weights (file will be generated if does not exist):

m

{MicroBlaze Simulator Options)
Verbose: =l

Qutput File: . feystem.out |

Detect Wirites In The Instruction Memory: [7]

b)

Figure C.2. Options for program Megablock Estimatian.

164

|| Vhal for Megablocks v0.1 fpcin|a{Sls

| Programl Options |

Save Selected file: none

Path To Eif Fles: | felfs

Megablock Extraction Folder: :.fmegablodc_extracﬁon]

Output Folder: ;'b_u'q:ﬂ.-__vhdl
Vhdl Module Type: Sﬁ.
\iirite Test Bench:]|
(Graph Operations Latendies)
Use One Cydle Latencies: [

Kl with Weights (file will be generated if does not exist):

(MicroBlaze Simulator Options)
Verbose: 7

Output File: i.;fsvstem.out

Detect Writes In The Instruction Memory: [7]

Figure C.3. Options for program VHDL for Megablocks.

i S
| 4| VHDL for Megablock Detector v0.3 [EENEE

| ng!am| Options |

[Save |[Save as...]SPJected file: ‘default.config

Output Folder: ;.,.fouu:u.lt

| || Maximum Pattern Size {int): 24

Bitwidth (int): [15

Write Single Vhd File: =l

Figure C.4. Options for program VHDL for Megablock Detector.

165

About the Author

Joado Bispo received his 5-year Engineer degreg

Computer Systems and Informatics from University
Algarve in July 2006.

Prior to graduation, he spent 5 months at
Computer Engineering division of Delft University ¢
Technology as Guest Investigator. Before applymat
doctorate scholarship, he was involved in a biédte
cooperation project and in the context of that gubj
visited the University of Karlsruhe, and spent aryas a
researcher at INESC-ID, in Lisbon.

He is a member of the SPeCS research group at FEbM®, and during 2011 was a
regular visitor of the lab.

His research interests include Reconfigurable Cdimgu Architecture Design
Exploration, Automatic Generation of Hardware fqeSific Applications and Java Platform

Programming.

List of Publications Related to this Thesis:

e J. Bispo and J. M. P. Cardoso, "Hardware Pipelimh&untime-Detected Loops," in 25th Symposium on

Integrated Circuits and Systems Design, BrasiliazB 2012.

e J. Bispo, N. Paulino, J. C. Ferreira, and J. MC&rdoso, "Transparent Runtime Migration of Loop-&hs
Traces of Processor Instructions to Reconfigurdtiecessing Units,'Selected Papers from the 2011
International Conference on Reconfigurable Commutind FPGAs (ReconFig 2012012 (under review).

e J. Bispo, N. Paulino, J. C. Ferreira, and J. MC&doso, "Transparent Trace-Based Binary Acceterdtr

Reconfigurable HW/SW SystemsEEE Transactions on Industrial Informatica)12 (under review).

e J. Bispo, N. Paulino, J. M. P. Cardoso, and J. &reiira, "From Instruction Traces to Specialized

Reconfigurable Arrays,” in Intl. Conf. on ReConHRigble Comp. and FPGAs (ReConFig'2011), Cancun,
Mexico, 2011, pp386-391.

J. Bispo and J. M. P. Cardoso, "Techniques for Dyoally Mapping Computations to Coprocessors," in
Intl. Conf. on ReConFigurable Comp. and FPGAs (Reé&gi2011), Cancun, Mexico, 2011, pp. 505-508.
Jodo Bispo and Jodo M. P. Cardoso, "On Identifgng Optimizing Instruction Sequences for Dynamic
Compilation,” inint'l Conference on Field-Programmable TechnoloddPT'10), Tsinghua University,
Beijing, China: 2010, pp. 437-440.

167

Jodo Bispo and Jodo M. P. Cardoso, "Using the Megklio Partition Programs for Embedded Systems at
Runtime," inINForum - Simpdsio de Informaticelniv. do Minho, Braga, Portugal, 2010.

Jodo Bispo and Jodo M. P. Cardoso, "On Identiffagments of Traces for Dynamic Compilation,Tnitil
Conference on Field Programmable Logic and Appiaa (FPL) Milano, Italy, 2010, pp. 263-266.

Jodo M. P. Cardoso, Jodo Bispo, and Adriano K. I$28)c"The Role of Programming Models on
Reconfigurable Computing Fabrics," @hapter Xl in the book: Behavioral Modeling for Bedded
Systems and Technologies: Applications for Desigeh lanplementationL. Gomes and J. M. Fernandes,
Eds.: IGI Global, 2009.

Publications Unrelated to this Thesis:

Jodo Bispo and Ana Paiva, "A model for emotionattagion based on the emotional contagion scale,”
in 3rd Int'l Conference on Affective Computing ancelligent Interaction (ACIl) Amsterdam, Netherlands,
2009, pp. 1-6.

Yiannis Sourdis, Jodo Bispo, Jodo M. P. Cardosd,&tamatis Vassiliadis, "Regular Expression Matghin
in Reconfigurable HardwareThe Journal of VLSI Signal Processing Systemois, 51, pp. 99-121,
Springer, April 2008.

Carlos Morra, Jodo M. P. Cardoso, Jodo Bispo, ametgén Becker, "Retargeting, Evaluating, and
Generating Reconfigurable Array-Based Architectlré@s6th IEEE Symposium on Application Specific
Processors (SASP 200&naheim CA, USA, 2008, pp. 34-41.

Carlos Morra, Jodo Bispo, Jodo M. P. Cardoso, ametgdén Becker, "Combining Rewriting-Logic,
Architecture Generation, and Simulation to ExplBdarse-Grained Reconfigurable Architectures,Tlie
Sixteenth Annual IEEE Symposium on Field-Progranien&ustom Computing Machines (FCCM’'08)
Stanford, Palo Alto, CA, USA, 2008, pp. 320-321.

Jodo Bispo and Jodo M. P. Cardoso, "Synthesis glilRe Expressions for FPGAdyiternational Journal

of Electronics (IJE)yol. 95, pp. 685-704, Taylor & Francis, January 00

Joéo Bispo and Jodo M. P. Cardoso, "A Prelimindealfor Adapting Programs to Parallel Environménts,
in Proceedings of ACACES 2008 Poster Abstracts: Adéi@omputer Architecture and Compilation for
Embedded SystenisAquila, Italy, 2008, pp. 231-234.

Jodo Bispo, Yiannis Sourdis, Jodo M. P. Cardosal Stamatis Vassiliadis, "Synthesis of Regular
Expressions Targeting FPGAs: Current Status and nOfssues,” inInt'l Workshop on Applied
Reconfigurable Computing (ARC’07), Mangaratiba, R@Janeiro, Brazil, 2007, pp. 179-190.

Jodo Bispo, Yiannis Sourdis, Jodo M. P. Cardoso,&tamatis Vassiliadis, "Regular Expression Matghin
for Reconfigurable Packet Inspection,” IEEE Int'l Conference on Field Programmable Teclogyl
(FPT’06), Bangkok, Thailand, 2006, pp. 119-126.

168

Index

2D CGRA, xiii, xvi, xvii, 72, 73, 74, 75,
76, 89, 90, 103

Apple, 3, 148

basic block, xxvi, 8, 30, 31, 34, 36, 37, 38,
39, 43, 44, 61, 97, 99, 102, 134, 135

binary translation, 3, 5, 19, 20, 27, 33, 34,
39

BRAM, xviii, xxiii, 96, 158, 159

C code, xv, xvi, xviii, 2, 45, 46, 78, 79, 93,
133, 135

Catapult C, 2, 147

CCA, 27

CGRA, 13,71, 76

compilation tools, 53, 54, 145

control-flow, 7, 45, 52, 93, 96, 138

coprocessor, vii, xv, 1, 2, 5, 7, 9, 10, 15,
16, 19, 37, 41, 42, 43, 57, 64, 71, 141,
142, 145, 150

Critical Path Length, xxiii, 103, 107

critical sections, 1, 143

Crusoe, 3, 19

custom hardware, 2, 21

DHSP, xxiv, 2, 4, 7, 16, 41, 14%5ee
dynamic partitioning

DIM, 33

dynamic compilation, 3, 15, 17, 19

dynamic partitioning, 5, 15, 19, 21, 70, 73,
102, 141

embedded systems, 1, 4, 5, 15, 17, 19, 22,
26, 27, 30, 33, 39, 142, 147

execution trace, 16, 21, 45, 48, 50, 68, 78,
145

FPGA, 13, 20, 22, 73

fragment, 21, 44, 45, 48, 97, 99

GPP, 7,14

hardware accelerator, 41

Hardware/software co-design, 1

high-level synthesis, 2, 77

hotspots, 1, 9, 24

if-conversion xvi, xvii, xxi, 4, 6, 52, 53,
55, 60, 93, 111, 112, 113, 114, 116, 117,
124, 133, 138, 142, 143, 144, 145

ILP, 20, 35, 107, 116, 144

IM, 81

inner loop unrolling, 4, 116, 133, 143

Instruction Set Architecture, 7

Intel, 3, 19, 148

intermediate representation, 4, 15, 19, 50,
55, 56, 58, 64, 96, 119, 138

Intermediate Representation, xii, 5, 41, 50,
57, 142, 144

IPC, 109, 114, 120

Java, 3, 10, 15, 19, 134, 137, 148, 171

JIT, 3, 15, 25

Linux, 3

LM, 81

Macintosh, 3

MacOs, 3

Megablock, 4, 45, 50

Megablock coverage, 6, 93, 101, 102

Megablockidentification xiii, 57, 68, 158

Mentor Graphics, 2

MicroBlaze, xii, xv, xvi, 26, 27, 37, 46, 54,
55, 57, 58, 79, 93, 96, 112, 124, 125,
126, 133, 135, 137, 138, 142, 144, 151,
153, 155, 158, 159, 160

Microprocessoy 148, 152

MSI, 68, 97

Multi-core, 147

overhead, 3, 9, 12, 17, 23, 27, 31, 36, 37,
39, 42, 43, 52, 74, 75, 98, 99, 107, 125,
134,152, 159

parallel computing, 5, 41, 44

partitioning unit, 4, 5, 155

pattern elements, xxv, xxvi, 47, 48, 49, 61,
62, 64

pattern unit 48, 97, 102

pattern-matching, 4, 142

Pentium, 3, 20, 148

pipelining, v, vii, xvii, xviii, 4, 6, 19, 33,
35, 38,57, 73, 76, 77, 80, 81, 84, 86, 89,
90, 91, 93, 109, 124, 125, 126, 127, 128,
129, 130, 131, 132, 133, 139, 141, 142,
143, 145, 153

PLB, xviii, xxv, 155, 157, 159

PowerPC, 3

profile phase, 5, 57, 155

proof-of-concept, 6, 102, 122, 124

169

reconfigurable architecture, 20, 21, 24, 38,
149, 150

reconfigurable computing, 19, 20, 149, 150

Rosetta, 3

RPU, 11, 16, 70, 81

Runtime Reconfiguration, vii

SAl, xxi, xxvi, 57, 68, 69, 91, 97, 98, 99,
102, 110, 144, 155

SAr, 73, 103, 125

sequential code, vii, 4, 5, 41, 44

SM, 81

Source Code, xii, 52

source-to-source, 5, 41, 52, 56, 145

SRA, xiii, xiv, xvi, xxvi, 75, 76, 90, 103,
155

synthesis, 13, 23, 74, 77, 96, 129

systems-on-chip, 1

Transmeta, 148

Verilog, 1, 13, 147, 149, 158

VHDL, xix, 13, 96, 122, 124, 129, 142,
149, 151, 167, 169

Warp, 22, 74, 99, 133

Windows, 3

x86, 3, 19, 20

170

